XML Stream Guide

UNIFACE V8.2

10117048201-00
Revision 0

Jun 2001

XML

UNIFACE V8.2
XML Stream Guide

Revision 0

Restricted Rights Notice

This document and the product referenced in it are subject to the following
legends:

© 2001 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS-Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in Compuware Corporation
license agreement and as provided in DFARS 227.7202-1(a) and 227.7202-3(a)
(1995), DFARS 252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR
52.227-19, or FAR 52.227-14 (ALT I1I), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of Compuware
Corporation. Use, disclosure, or reproduction is prohibited without the prior
express written permission of Compuware Corporation.

Trademarks

Compuware is a registered trademark of Compuware Corporation and UNIFACE is a
registered trademark of Compuware Europe B.V. CICS, DB2, IBM, and OS/2 are
trademarks of International Business Machines Corporation. SOLID Server (TM), SOLID
Bonsai Tree (TM), SOLID Remote Control (TM), and SOLID SQL Editor (TM) are
trademarks of Solid Information Technology Ltd. All other company or product names used
in this publication are trademarks of their respective owners.

24-hour online customer support and learning

MyUNIFACE is an Internet-based support and learning environment which provides
real-time access to a wealth of UNIFACE product and technical information. Features
include online product documentation, technical tips and know-how, up-to-date platform
availability, product fixes, course information, online training, and live communication
with fellow developers. You can obtain full access privileges for MyUNIFACE by completing
an online registration form (customer license information is required) at
http://myuniface.com/.

For the latest version of the documentation always check the UNIFACE Library on the
MyUNIFACE site.

Your suggestions and comments about UNIFACE documentation and course material are
highly valued. Please send your reactions to:

Compuware Europe B.V.

Delivery Methods & Practices

P. O. Box 12933

1100 AX Amsterdam e-mail: DM&P-Hotline@nl.compuware.com
The Netherlands fax: +31 (0)20 311-6213

UNIFACE V8.2

Contents
Preface
1 Three-tier development
1.1 Three-tier architecture 1-1
1.1.1 Advantages of the three-tier software architecture. 1-2
1.1.2 Requirements of three-tier development 1-3
1.1.3 Presentation tier e 1-5
114 Businesslogic tier. 1-5
1.15 Dataaccesstier. 1-6
1.1.6 Disconnectedrecordsets i 1-7
1.2 XML StreamMS e 1-7
121 Loosely coupled connections. oL 1-8
1.2.2 XML Stream 1-9
1.2.3 Processing information 1-12
1.2.4 Attributesin XMLstreams. 1-13
1.2.5 Document Type Definition (DTD). 1-15
1.3 DTD EAitOr . ..o e 1-17
1.31 DTD EAitOr . ..t 1-17
1.3.2 DTDWizard 1-20
1.4 UNIFACE processing of XML streams. i 1-24
141 Saving dataintoan XMLstream. i 1-24
1.4.2 Loading data from XMLstreams. i 1-26
1.4.3 Null valuesin XMLstreams. 1-27
144 Included entities and XML streams. 1-28
145 Application of DTDstoan XMLstream 1-28
1.4.6 Default DTD mapping and mapping defined on a component .. .1-29
1.4.7 DTD mapping lists. 1-29

XML Stream Guide (Jun 2001) iii

UNIFACE V8.2

2 Modifications to the Repository for XML streams

3 UNIFACE support for XML and DTD syntax

3.1 Attribute declarations. 3-1
3.2 Elementdeclarations 3-3
3.21 Root elementdeclarations 3-3
3.2.2 Element declarations for UNIFACE entities 3-3
3.23 Element declarations for UNIFACEfields. 3-4
3.24 XML standard syntax (expressed in UNIFACE conventions) 34
3.3 Miscellaneous DTD and XML syntax SUPPOIt 35
3.3.1 COMMEBNTS . .. 35
3.3.2 White Space 35
3.3.3 Processing INStructions. 35
3.34 Unique elementnames. 3-6
3.35 XML entities. 3-6
3.3.6 Document subdeclarations. 3-7
34 Sample DTDs and XML Streamsottt e 3-7
34.1 A basic DTD and XML Streamt 3-7
3.4.2 Sample DTD and XML stream 3-9
3.4.3 Element declarations forentities. L. 3-12
3.4.4 Unique element names and namespaces 3-13
3.45 DTDs and mappingo oottt e e e 3-14
4 XML transformations
4.1 XSLT (XSL Transformations).ot 4-1
4.2 UNIFACE XSLT tools and components.ttt 4-2
4.3 HOW XSLT WOKIKS . . . oo e e e 4-2
4.3.1 Learning more about XSLT. 4-4
4.4 XSLTWorkbench 4-4
4.5 USY S ST o 4-6
4.6 Basic XSLT techniques—examples i, 4-7
4.6.1 XSLT—rename elements and attributes 4-7
4.6.2 XSLT—change attributestoelements. 4-9
4.6.3 XSLT—reorder elements 4-10
4.6.4 XSLT—suppress empty elements or attribute 4-11
4.6.5 XSLT—implement exclusive OR relationship. 4-13
4.7 XSLT applied to UNIFACE—examples 4-14
4.7.1 B2B XSLT stylesheets 4-14
4.7.2 Transforman XML stream i 4-16
4.7.3 Get values from an XML stream using XSLT 4-19
4.7.4 Operation GETXMLITEM 4-22
4.8 Validation—examples 4-24

XML Stream Guide (Jun 2001) iv

UNIFACE V8.2

4.8.1 Validate an XML stream 4-24
5 Handling communication between components
51 Usingthe DTD EdItOr e 5-1
511 Startthe DTD Eitor. e e 5-2
5.1.2 Generate a DTD from a component’s structure 5-3
5.1.3 Generate DTDs fromentities 5-4
514 Load aDTDfromafile 5-5
515 Define relationshipsin XML streams 5-6
5.1.6 Select attributesforelements 5-6
5.1.7 Define a default mapping foraDTD............... 5-7
5.1.8 DefineaDIDmanually, 5-9
5.1.9 Define additional DTD properties 5-13
5110 Compile @aDTDot 5-14
5.2 Handling XML streams 5-14
521 Lload aDTDfromafile........... i 5-14
5.2.2 Select attributesforelements 5-15
5.2.3 Define a local mappingforaDTD 5-16
524 Createandsendan XMLstream 5-16
525 Receive an XML Streamttt 5-16
5.2.6 Reconnect data froman XMLstream 5-18
5.2.7 Doremotevalidation. i 5-18
5.2.8 Make DTDs available to non-UNIFACE components 5-19
5.3 Develop and test XSLT stylesheets. 5-20
6 Proc statements and functions
BOC I C . o ot 6-3
BOCCPIOPEItIES . . o ottt 6-5
BOCCStALUS. . . .ttt 6-7
FEtHEVE/TECONNECT 6-9
XMloAad . . . e 6-13
XN S AV . o . 6-17
XMIValidate 6-21

XML Stream Guide (Jun 2001) Y

UNIFACE V8.2

vi

(Jun2001)

Preface

Audience

UNIFACE V8.2

This guide describes three-tier development using XML stream
parameters.

The guide is written for all UNIFACE developers and managers working
in a multitier or component-based development paradigm.

This guide assumes some understanding of the XML standard issued by
the World Wide Web Consortium.

How to use this guide

Conventions

The guide describes three-tier development, the XML stream
parameters, the UNIFACE DTD Editor, and the Proc statements and
functions that handle XML streams.

The XML standard, UNIFACE and component-based development use
certain terms in slightly different ways.

Entity

In XML, an entity is a named character string defined in a DTD. This
string can be used in an XML document by using escape characters
combined with the name of the entity.

In UNIFACE, an entity is an object in the application model consisting of
data and default code.

XML Stream Guide (Jun 2001)

Vii

UNIFACE V8.2

To distinguish between these two usages, the guide refers to XML entities
and UNIFACE entities.

This guide also uses the term predefined entities, which is defined in the
XML standard.

Attribute

In XML, an attribute is a property of an XML element. For example, a
COUNTRY element might have a has_state attribute, as follows:

<QANTRY has_st at e="no" >Mal t a</ GCONIRY>

<QANTRY has_state="yes">lhited Sates of Anerica</ CONIRY>

In component-based development, the term attribute refers to data that
is exposed by a component.

This guide uses attribute exclusively in the sense intended by the XML
standard.

This guide also refers to processing information attributes, which are
XML attributes generated by UNIFACE to place state and validation
information in XML streams.

viii

(Jun2001)

UNIFACE V8.2

Chapter1 Three-tier development

1.1 Three-tier architecture

The three-tier software architecture is a strict and formal split of an
application into distinct parts, each part performing a specific function.
The tiers described in a three-tier architecture are the presentation tier,
the business logic tier, and the data access tier.

The function of each tier is as follows:

Presentation tier—this tier holds all the components responsible for
the user interface. These components are typically UNIFACE Server
Pages, forms, and reports, and non-UNIFACE components, such as
JavaServer Pages or Microsoft's Active Server Pages.

Business logic tier—this tier holds all the components that handle
business rules and task-specific behavior. In UNIFACE, the business
tier is composed of session services for the centralization of complex
business rules affecting multiple entities. Optionally, this tier
contains entity services for the centralization of simple business rules
for single entities. In addition, services and 3GL components can be
found here.

Network and middleware access are encapsulated by the middleware
drivers and the UNIFACE Router.

Data access tier—this tier contains physical database structures
captured in the relational business object model. UNIFACE ensures
physical data access by encapsulating SQL in its DBMS drivers.

XML Stream Guide (Jun 2001)

11

UNIFACE V8.2

1.1.1 Advantages of the three-tier software architecture

The three-tier software architecture has advantages in the following
areas:

Scalability and deployment flexibility—component roles are
specialized, improving maintainability, networking, and 1/0
overheads.

Component roles are clearly defined within a three-tier framework.
This provides a good basis for component-based development and re-
usability.

Stateless communication between components in the presentation
tier and those in the business logic tier is ensured by means of XML.

Infrastructure independence is enhanced by the use of a three-tier
architecture. This is because presentation and data access—areas
that are often infrastructure-dependent—are separated from the
application’s business logic.

A specific set of skills is required for the development of each tier, so
tiers can be developed independently of each other. For example, the
thin presentation tier allows front-end experts to do their work

1-2

(Jun 2001) Three-tier development

UNIFACE V8.2

without being affected by developments taking place in the business
logic tier.

Figure 1-1 Three-tier software architecture.

1.1.2 Requirements of three-tier development

UNIFACE fully supports the following requirements of three-tier
application development:

= Component-based development

= Support for distributed architectures

e Support for disconnected record sets

XML Stream Guide (Jun 2001) 1-3

UNIFACE V8.2

Component-based development

Each application tier is component-based. This means that each tier is
composed exclusively of replaceable components that communicate via
well-defined signatures. It is therefore essential to construct components
for each tier using CBD methodology.

UNIFACE fully supports component-based development.

Support for distributed architectures

Multitier applications are ideally deployable on n-server, n-client
networks, and the presentation layer should be readily deployable across
the Internet.

UNIFACE fully supports distributed architectures. UNIFACE
introduces XML streams that enable transparent communication with
Internet-based rich client components.

Support for disconnected record sets

Presentation layer components should not have a role in database 1/0 as
this role is handled by the data layer.

This implies that data in the presentation layer does not have a
connection to the database. Records in the presentation layer are
therefore referred to as disconnected record sets. When data is returned
to the business layer, there must be a mechanism for reconnecting the
data to existing occurrences. For example, the business layer must be
able to identify new occurrences, modified occurrences, and occurrences
marked for deletion. Support for disconnected record sets is essential for
fully separating the presentation tier from the business tier.

UNIFACE supports disconnected record sets by including processing
information with XML streams. This processing information is available
to any application or component that can parse XML streams.
Additionally, the processing information is accessible by the Proc
functions $occcrc, $occst at us, $fi el dproperti es, and
$occproperties.

1-4

(Jun 2001) Three-tier development

UNIFACE V8.2

1.1.3 Presentation tier

The presentation tier is the logical group of components in an application
that provide a user interface, such as UNIFACE Server Pages, forms,
reports, as well as other non-UNIFACE components such as JavaServer
pages and Microsoft's Active Server Pages.

Presentation tier components have the following characteristics:

= Allow users to interact with the application.
= Do not process data or handle business rules.
= Do not directly access databases or other storage media.

Validation and business logic

Declarative validation on the presentation tier in a three-tier application
reduces network and server overhead, because it can ensure that
substantially correct data is submitted to the business tier. Early
validation of data on the presentation tier is also user-friendly.

However, procedural validation on the presentation tier is not
recommended because the enforcement of business rules is centralized by
the business tier. Furthermore, the capabilities of presentation
components to enforce business rules can be limited. For example,
browsers can choose to disable JavaScript code.

Validate carefully on the presentation tier for the following reasons:

= Combining business logic with user-interface issues complicates code
and debugging and defeats the purpose of three-tier development.

= Distributing logic across client machines makes applications difficult
to deploy and maintain.

1.1.4 Business logic tier

The business logic tier consists of the group of components that
implements business rules.

Components that belong to the business logic tier centralize business
logic, and separate this logic from the user interface and from the data
access tier. This simplifies maintenance and the integration of new
components and subsystems.

Business logic tier components have the following characteristics:

XML Stream Guide (Jun 2001)

15

UNIFACE V8.2

= Responsibility for referential integrity by maintaining relations and
record sets for a transaction or task.

= Communication with the components in the presentation tier using
disconnected record sets. This ensures a clear separation between
presentation and application logic. You can implement
communication by using UNIFACE XML stream parameters.

= Encapsulation of physical data access via the network by means of the
UNIFACE Router and a set of middleware drivers.

In UNIFACE, the responsibility for the business logic tier is handled by
two UNIFACE component types: the session service and, optionally, the
entity service. The session service handles complex business rules
affecting multiple entities. The optional entity service handles simple
business rules and is used for strategic reasons in distributed
deployment environments that require centralized execution of simple
business rules and centralized control of data access.

1.1.5 Data access tier

The data access tier can be seen as a simple ‘wrapper’ for the databases
and storage devices, which retrieves data and transforms it into a
suitable format for the rest of the application.

These functions are fulfilled by the UNIFACE infrastructure. The data
access tier is all of the UNIFACE functionality that handles data storage
and retrieval.

The data access tier consists of the following:

= Physical database structures captured in the relational business
object model

< DBMS drivers that encapsulate physical data access

Data-access tier functionality passes data to the business logic tier using
a standard data interchange format. This hides the complexity of the
data storage medium from the business and presentation tiers. As a
result, UNIFACE is platform- and location independent.

UNIFACE provides comprehensive support for a wide range of databases
and distributed architectures. The UNIFACE infrastructure of database
drivers combined with the UNIFACE Router provides a complete data
tier for UNIFACE applications.

1-6

(Jun 2001) Three-tier development

UNIFACE V8.2

1.1.6 Disconnected record sets

A disconnected record set is a package of data that represents a group of
occurrences of a UNIFACE entity (optionally including any inner
entities). Data state is not maintained by a connection to the data source.
Instead, the disconnected record set contains processing information that
allows reconnection of the disconnected data to its source.

Disconnected record sets are handled in UNIFACE using xm st r eam
parameters. UNIFACE Server Pages generate HTML that emulates
disconnected record sets.

For example, it is the responsibility of the business tier to enforce
business rules. Presentation tier components have to submit data to the
business tier for processing, and business tier components must
reconnect this data to other data in the business and data tiers before
processing can occur.

disconnected record sets, because no state is maintained between Web
client and Web server. Use of disconnected record sets throughout an
application enables Web deployment without compromising the existing
application infrastructure.

0 Note: Web deployment of the presentation layer always requires

1.2 XML streams

XML streams are data streams using an XML format. XML streams
enable loosely coupled connections between components, and provide a
standardized format for data transport between components. UNIFACE
can also attach processing information to data in an XML stream to allow
the data state to be transported with the data.

XML Stream Guide (Jun 2001) 1.7

UNIFACE V8.2

1.2.1 Loosely coupled connections

Components are connected by the operations they expose to each other,
and these connections can be loosely or tightly coupled. Components are
loosely coupled if you can make changes to the internal structure of a
component without having to make changes to the components with
which it communicates. Components are tightly coupled if changes to one
component necessitates changes to other related components.

Loosely coupled connections are a good practice in component-based
development in general, and this is particularly true for three-tier
development. Loosely coupled connections give great flexibility to the
architecture and implementation of each tier.

A loosely coupled connection is defined solely by the data interchanged
between the components, and is independent of the internal state or
structure of the components themselves. Thus, the structure of the data
streams between components is the crucial consideration when building
for loosely coupled connections:

= If the data stream can be described rigorously, a component can
declare its data requirements to the outside world.

= If the stream can be processed and transformed easily, the data in the
stream can be loaded into the component regardless of how the
structure of the stream or the component changes.

= If the stream can be processed by generally available, reusable
software, the stream can be passed to 3GL components.

XML and loosely coupled connections
XML meets the requirements stated above:

= XML uses DTDs for structural definitions. Components that use XML
to exchange data can declare that they can process data conforming
to a given DTD, and other components can produce data targeted at
the DTD without requiring any knowledge of the target component.

= XML is supported by other technologies and standards, for example,
XSL, that enable transformation of XML into a wide range of output
formats.

= Third-party XML parsers and processors are readily available on
most infrastructures.

1-8

(Jun 2001) Three-tier development

1.2.2 XML stream

UNIFACE V8.2

An XML stream is a packet of XML data sent as a parameter from one
component to another. The data is processed to comply with the XML 1.0
standard.

UNIFACE can transfer field data, data relationships, and processing
information by XML stream parameters.

Field data

UNIFACE converts data in fields to XML element values. This can
require some conversion of data types, and substitution of characters
reserved for XML syntax. These tasks are handled by the Proc xm | oad,
xm save,andretrieve/ reconnect statements.

The table describes how UNIFACE converts data from UNIFACE data
types to XML element values in an XML stream. In general, data is
converted to the UNIFACE String data type, and the string is then
loaded into the XML stream using the procedure described below for
String data:

Table 1-1 Conversion of UNIFACE data types to PCDATA in XML streams. part 1 of 2

UNIFACE data Converted to... Description

type

String String, with No conversion takes place, except:
substitution of « substitution of predefined entities
predefined for quote ("), apostrophe (), angle
entities bracket (< and >) and ampersand

(&) characters.

 profile characters and subfield
separators are converted to a
backslash (\) keystroke
combination. For example, GOLD
*is converted to *.1

Special string As for String.

Raw data String, with The field is converted into a string
substitution of using an internal base 64 encoding.
predefined
entities

XML Stream Guide (Jun 2001) 1-9

UNIFACE V8.2

Table 1-1 Conversion of UNIFACE data types to PCDATA in XML streams.

part 2 of 2

UNIFACE data
type

Converted to...

Description

Numeric

Floating decimal
point

Date

Time

Combined date
and time

Boolean
Image (all types)

Linear date

Linear time

Linear date and
time

String, with
substitution of
predefined
entities

String, with
substitution of
predefined
entities

String, with
substitution of
predefined
entities

String, with
substitution of
predefined
entities

String, with
substitution of
predefined
entities

String

String, with
substitution of
predefined entities

String, with
substitution of
predefined
entities

String, with
substitution of
predefined
entities

String, with
substitution of
predefined
entities

The format of the string is based on
the field’s Display format, or on the
format specified in the Format
trigger.

The format of the string is based on
the field’s Display format, or on the
format specified in the Format
trigger.

The format of the string is based on
the field’s Display format, or on the
format specified in the Format
trigger.

The format of the string is based on
the field’s Display format, or on the
format specified in the Format
trigger.

The format of the string is based on
the field’s Display format, or on the
format specified in the Format
trigger.

"F" (false) or "T" (true).

The field is converted into a string
using an internal base 64 encoding.

The format of the string is based on
the field’s Display format, or on the
format specified in the Format
trigger.

The format of the string is based on
the field’s Display format, or on the
format specified in the Format
trigger.

The format of the string is based on
the field’s Display format, or on the
format specified in the Format
trigger.

1-10

(Jun 2001) Three-tier development

UNIFACE V8.2

Table notes:

1. xm | oad does not convert profile character and subfield separator escape sequences to
the corresponding profile character or subfield separator if the xm | oad/ noprofile
switch is specified.

The table gives replacement texts for each predefined entity specified in
the XML standard. An XML parser replaces the entities with the
replacement texts after parsing the XML source.

Table 1-2 Predefined entities.

Predefined entity Replacement text
> ;
&l't;
&anp;
'
" ;

R ANV

Data relationships

UNIFACE entities are represented as XML elements in XML streams.
The fields of an entity are represented as child elements of the entity’s
element.

Inner entities are represented as child elements of the outer entity.

XML streams do not make a distinction between database and non-
database fields, or between fields and entities defined in a component or
in an application model.

Note: The structure of an XML stream (including the names, nesting, and
order of all elements) is declared by a DTD, which is defined in your
application model.

streams. Data is saved into, and loaded from, XML streams in the same
way, regardless of whether the entity or field occurs in your application
model.

“ Note: All field and entity data is treated in an identical manner by XML

XML Stream Guide (Jun 2001) 1-11

UNIFACE V8.2

Processing information

UNIFACE can include processing information in the XML stream,
describing the modification and validation status of the occurrences, and
also enabling reconnection of the data to its source. For more
information, see section 1.2.4 Attributes in XML streams.

The Proc functions $occcr ¢, $occst at us, $occproperti es and

$f i el dpr operti es can be used to access processing information loaded
from an XML stream. The statementretri eve/ reconnect requires
processing information in order to reconnect data to a database.

1.2.3 Processing information

Processing information is information about data—whether data is new
or already stored in a database, or whether data is valid or nonvalid.

Processing information is used in all versions of UNIFACE to manage
exchanges of data between the database and components. This occurs
transparently, so that a programmer generally does not have to handle
data state. UNIFACE XML streams expose this information to
programmers and 3GL components in the form of XML attributes.

For example, when an occurrence is deleted on a UNIFACE form with
direct database access, UNIFACE marks the occurrence for deletion in
the component’s data structure—but the database is not modified.
Instead, the request to delete the occurrence is stored as processing
information in the component’s data structure. When the user stores the
data, UNIFACE deletes the occurrence from the database and from the
component’s data structure. In default UNIFACE 1/O, the processing
information used by UNIFACE to manage changes in data between the
component data structure and the database is hidden from the
programmer.

XML streams simply add this information to the data when it is
transformed into XML format. Components receiving the XML stream
extract the processing information from the XML stream when loading
the stream’s data into component fields. This enables interchange of both
data and data state between components. This mechanism also enables
UNIFACE to interchange data state with 3GL components.

1-12

(Jun 2001) Three-tier development

1.2.4 Attributes in XML streams

UNIFACE V8.2

UNIFACE uses XML attributes to store meta information about
occurrences in an XML stream, and allows you to define additional

attributes.

Meta information attributes

The attributes UNIFACE can generate to store state information in an
XML stream are described below. UNIFACE automatically generates the
attributes if they are specified in the DTD used by the stream.

The table shows the attributes generated by UNIFACE for XML streams.

Table 1-3 UNIFACE-generated attributes in XML streams. part 1 of 2
Attribute Allowed values valid for...1 Required Description
by...2
id UNIFACE-generated entity retrievel/ UNIFACE merges occurrences with
base-64 encoded elements reconnect matching ID attributes. ret ri eve/
string reconnect also calculates ID
attributes for database occurrences,
enabling merging of XML data with
database occurrences.
crc UNIFACE-generated entity retrievel/ UNIFACE only merges XML
hexadecimal string, or elements reconnect occurrences with database

a user-defined string
set using $occcrc

status new—the occurrence
is new, and does not
represent a database
occurrence

occurrences if the cr ¢ attribute of
the XML occurrence matches the
CRC checksum calculated for the
database occurrence.

If status="new',retrieve/
reconnect creates a new
occurrence to hold the reconnected
record.

XML Stream Guide (Jun 2001)

1-13

UNIFACE V8.2

Table 1-3 UNIFACE-generated attributes in XML streams.

part 2 of 2

Attribute Allowed values valid for..! Required
by...2

Description

del —the occurrence
is marked for deletion

est —the occurrence entity retrievel/
may be elements reconnect
reconnectable to a

database occurrence

If status="del ", retri eve/
reconnect marks the matching
occurrence in the hitlist for deletion.

If status="est",retrieve/
reconnect attempts to update the
existing occurrence with data from
the XML stream. If an existing
occurrence is not found in the
database or the component, a new
occurrence is created to hold the
reconnected record.

val err UNIFACE or user- entity Remote This attribute holds validation error
defined error elements and validation messages. xm | oad fires the On
message field elements Error trigger for each field or
occurrence with a val err attribute.
Table notes:

1. Elements in an XML stream are either mapped to entities or fields painted on a UNIFACE component. Entity elements are

mapped to UNIFACE entities, and field elements are mapped to UNIFACE fields.

2. XML streams can be used without any of these attributes, but the attributes are required by some Proc. In particular, r et ri eve/
reconnect has to resolve the origin and state of occurrences before it can merge XML stream data with database data.

id

i d isaunique identifier based on the primary key of the occurrence. If an
occurrence is new, the value of i d is based on the occurrence’s internal
identifier in the component’s data structure.

Note: In some cases the i d attribute could be reserved by other software.
To handle these situations, UNIFACE allows you to define a ui d
attribute, which has the same purpose and behavior as the i d attribute.

1-14

(Jun 2001) Three-tier development

UNIFACE V8.2

crc

cr c is acyclical redundancy checksum (CRC) based on the field values at
the time the occurrence was saved into an XML stream. When the XML
stream is reconnected to the database, the CRC value is recalculated and
compared with the CRC value in the XML stream. The CRC values must
match or the occurrence is not reconnected. (A mismatch indicates that
the data has been changed in the database since the disconnected record
set was created). This results in behavior identical to optimistic locking.

status

st at us stores the modification status of an occurrence. The following
values are allowed for st at us:

e "est"—the occurrence exists in the database
= "new'—the occurrence is new

e "del "—the occurrence is marked for deletion

valerr

If a data validation error occurred while reconnecting data from an XML
stream to a database, the validation errors can be written to an XML
stream sent back to the calling component. These validation errors are
stored in the val err attribute.

User-defined attributes

You can define your own attributes by declaring them in the DTD for the
XML stream. UNIFACE supports FI XED attributes, that is, attributes
with a fixed value. For more information about the syntax for declaring
attributes, see section 3.1 Attribute declarations.

1.2.5 Document Type Definition (DTD)

A Document Type Definition (DTD) defines rules for the structure of an
XML stream. DTDs are defined in the XML standard, issued by the
World Wide Web Consortium.

A DTD is also a UNIFACE Repository object, stored in the
UCDTYP.DICT table. The DTD Repository object includes DTD
definitions and a default mapping between the elements defined by the
DTD and component fields and entities.

XML Stream Guide (Jun 2001)

1-15

UNIFACE V8.2

Compilation of DTDs

Compilation of DTD objects updates the ULANA table. If a DTD specifies
a file name in its properties, compilation of that DTD also creates a text
file for that DTD with a . dt d file extension. These files conform to the
XML standard for DTDs.

The / urr command line switch copies the DTD declarations, default
mapping, and other properties from the ULANA table to the URR file.

The default mapping between XML elements defined by the DTD and
UNIFACE fields is compiled in the ULANA table, and is not stored in the
DTD text file.

XML structures you can define with a DTD
An XML DTD can specify the following XML structures:

= What XML elements are allowed in an XML stream.
= The multiplicity of each element. An element can be set to occur:
= once only
= zeroor once
= any number of times
= once or more times

= The content of an element. An element can contain data, other
elements, or a combination of data and elements.

< The order in which elements can occur. Elements can be constrained
to occur in a specific sequence, or they can be allowed to occur in any
order.

e The attributes of an element.

Caution: DTDs allow data structures that do not correlate to relational
database or UNIFACE data structures. Ensure that your DTDs always
meet the following criteria:

DTD checklist

XML DTDs allow data structures that are not relevant to UNIFACE.
Ensure that your DTD meets the following requirements:

= Elements that represent fields:

= must have PCDATA as their content model
= must be a child of an element representing the field's entity
= must occur once within each instance of the parent element

1-16

(Jun 2001) Three-tier development

UNIFACE V8.2

= Elements that represent entities:

= must contain elements only
= can be set to occur exactly once, 0-n times, 1-n times, or 0-1 times
within each instance of their parent element

= Always:

= avoid mixed content (this means that you must never allow an
element to contain PCDATA and elements)

1.3 DTD Editor

UNIFACE incorporates a DTD Editor to create and modify XML DTDs
for XML streams.

1.3.1 DTD Editor

The DTD Editor is a tool in the UNIFACE Development Environment
that allows you to create and edit Document Type Definitions (DTDs).
For more information on starting the DTD Editor, see section 5.1.1 Start
the DTD Editor. DTDs are sets of rules that define the structure of an
XML stream. For more information about DTDs, see section 1.2.5
Document Type Definition (DTD).

XML Stream Guide (Jun 2001) 1-17

UNIFACE V8.2

The DTD Editor consists of several forms, including the Define DTD
form, the DTD Wizard, the Define DTD Properties form and the DTD:
Default Mapping form. The DTD Editor starts by displaying the Define
DTD form.

Figure 1-2 Define DTD form.

H Define DTD: CAT_ART_DTD. ART

Dezcription |Categn:nr':.-' and atticle OTD
Crefinition

<! ELEMENT root (categories and articles¥*):

< !ELEMENT categories and articles (category®, article®, article_id,
<!ATTLIST categories_and articles id CDATA REQUIRED>
<!ATTLIST categories and articles cre CDATA FREQUIRED=
<ATTLISET categories_and articles status CDATA FREQUIRED:-
<!ATTLIZST categories and articles walerr CDATA $TMPLIED=
< !ELEMENT category (cat_id, cat_code, cat_description)=
“<1ATTLIST category id CDATR HREQUIRED=

=IATTLIST category crc CDATA HREQUIRED =

=I1ATTLIAT category status CDATA #REQUIRED-

=!ATTLIST category walerr CLATA #IMPLIED-

<! ELEMENT cat_id (#PCDATA) =

<VATTLISET cat_id walerr CDATA FTMPLIED:=

< !ELEMENT cat_code ($PCDATAL)=

<!ATTLIST cat_code walerr CDATA $IMPLIED-

< !ELEMENT cat_ description (#PCDATA)=

<VATTLIET cat_description walerr CDATA FTMPLIED:=

< !ELEMENT article (art_id, art name, art_price, art_description, art
<1ATTLIST article id CDATEZ HFREQUIRED:=

<1ATTLIST article crc CDATR HREQUIRED=

“1ATTLIST article status CDATA FREQUIREL:-

<1ATTLIST article walerr CDATA FIMPLIED=

< !ELEMENT art_id ($PCDATA) >

Wizard Mapping Properties... L84 Cancel

The DTD Editor displays the DTD for editing. For more information on
creating and editing DTDs with the DTD Editor, see section 5.1 Using the
DTD Editor. The DTD Editor provides the following utilities:

= Load from file—create a DTD in your Repository from a DTD in your
file system.

1-18 (Jun 2001) Three-tier development

UNIFACE V8.2

Load component structure—create a DTD from the data structure
painted on a component.

Properties—define additional properties for the DTD. For example,
you can define a URI location (an Internet address) for the DTD so
that non-UNIFACE components can locate the DTD.

Mapping—define a default map between XML elements and
UNIFACE fields and entities, so that UNIFACE can transport data
to and from the XML stream.

Validate—check that the DTD is syntactically correct.

DTD Wizard—create and manipulate DTDs using a graphical
interface. For more information about the DTD Wizard, see

section 1.3.2 DTD Wizard.

Menu options

The options available on the File menu include:

New DTD

Open

Save

Duplicate DTD

Delete DTD

Load Component Structure
Load from File

Save to File

Validate

Compile DTD

format specified in the XML standard. Save to File does not store your

“ Note: The Save to File option saves the DTD as a file using the DTD

changes in the Repository, and it does not copy UNIFACE-specific
information about the DTD to the file. For example, additional properties
and mapping defined for the DTD are not included in the file created by
Save to File.

XML Stream Guide (Jun 2001)

1-19

UNIFACE V8.2

1.3.2 DTD Wizard

The DTD Wizard is part of the DTD Editor. The DTD Wizard simplifies
the task of writing and maintaining DTDs by presenting DTDs
graphically, using familiar UNIFACE icons. In particular, the DTD
Wizard assists in the task of creating DTDs based on application model
objects.

Figure 1-3 DTD Wizard.

) DTD Wizard: CAT_ART_DTD. ART
Description k:ategnr\y' and article DTD
OTD kem Mame LIFMIF £CE Kame
‘ *
E- @ categary @ category CATART
""" = cat_id @ article ART ART
""" = cat_code - rticle_jid ART D
""" = cat_description = category_id cAaT D
- @& article 5 id B -
..... =t
----- = 5 name & ore
----- = gt price 4 stetus
----- = grt_description & valarr
----- = art_zvailability
----- = riicle_id
----- = category_id
(80,4 Cancel

The DTD Wizard is divided into two panes:

e The DTD Tree is displayed on the left-hand side of the Wizard. The
DTD Tree shows all the element declarations in the DTD as a tree

1-20 (Jun 2001) Three-tier development

UNIFACE V8.2

structure, with each element declaration represented as a node in the
tree. You can select items in the DTD Tree by clicking on them.

= The right-hand side of the DTD Wizard shows a list of all the DTD
declarations linked to the current node in the DTD Tree. The list view
also shows how the element names are mapped to UNIFACE field and
entity names.

Using the DTD Wizard, you can create syntactically valid DTDs without
any knowledge of DTD syntax. To add, remove, rename, or otherwise
modify an object in your DTD, right-click on the object in DTD Tree and
select an action from the pop-up menu.

Figure 1-4 DTD Wizard pop-up menu.

8 DTD Wizard: CAT_ART_DTD. ART

Description k:ategnr\y' and article DTD

------ CAT AR . DTD kem Matme MIF &CE Mame
Inser Entity

Load Fields
Insert Field
Select Attributes
Bemove
Fename

Ok Cancel

XML Stream Guide (Jun 2001) 1-21

UNIFACE V8.2

DTD Tree

DTDs declare elements that serve different roles in the XML stream.

Some elements represent UNIFACE entities, and others represent fields.
One element is the root element of the stream—it encloses all the other
elements in the stream, but it does not represent any UNIFACE object.

The DTD Tree uses icons to show the role of the elements declared by the
DTD:

= Root element—all DTDs define an element that encloses all other
elements in an XML stream. This element is called the root element.
The root element is not mapped to any UNIFACE object.

= Entities—elements that represent UNIFACE entities are displayed
using the standard UNIFACE entity icon.

= Fields—elements that represent UNIFACE fields are displayed using
the standard UNIFACE field icon.

= Root element—this element is displayed as a purple icon.

1-22 (Jun 2001) Three-tier development

Figure 1-5 DTD Wizard icons.

UNIFACE V8.2

AE-@ category

..... - ot

..... = st code

----- = cat description
=] & article

..... - gt

----- = gt name

..... = gt price

----- = 5t description
----- gt svailakbilty
----- = griicle_id

..... o Category_d

DTD kem Mame

‘ *

@ category
@ article

- rticle_id
= category_id
& id

& cro
& status
& walerr

Multiplicity operstor
Attribute

—— Field element
— Entity element
L Root element

List view

The list view displays information about the currently selected node in
the DTD Tree. In addition to showing icons described for the DTD tree,

the list view displays the following icons:
= Attributes—these are represented by a green icon.

= The multiplicity operator (which determines how many times an
element can occur in the XML stream) is represented by a red icon.

XML Stream Guide (Jun 2001)

1-23

UNIFACE V8.2

Table 1-4 Multiplicity operators.

Operator Description

* The element may occur zero, once, or many times
within its parent element.

? The element may occur zero or once within its parent
element.

+ The element may occur once or many times within its
parent element.

No operator The element must always occur once within its parent
element.

Note: The DTD Wizard always sets the multiplicity operator for all entity

elements to * (the element may occur zero to many times in the stream).

Field elements are always constrained to appear exactly once per

occurrence of their enclosing entity element.

Note: If it is necessary to change the multiplicity operator for an element,

you have to edit the DTD in the Define DTD form of the DTD Editor.

1.4 UNIFACE processing of XML streams

This section describes how UNIFACE creates XML streams, and how
UNIFACE extracts data from XML streams.

1.4.1 Saving data into an XML stream
UNIFACE components can transfer field values (and their modification
and validation state) into XML streams.

The XML stream is stored in a variable or parameter with xmlstream
data type.

1-24 (Jun 2001) Three-tier development

UNIFACE V8.2

Xxmisave

The xnl save statement saves the data from fields painted on a
component into an XML stream. The xm save statement does the
following:

= String data in each field is converted to comply with the XML 1.0
standard. This includes replacing angle brackets (< and >),
ampersand (&), and quotation marks (' and ") with appropriate escape
sequences. In the XML 1.0 standard, these escape sequences are
called predefined entities.

Refer to table 1-2 for replacement texts for each predefined entity
specified in the XML standard. An XML parser replaces the entities with
the replacement texts after parsing the XML source.

< Raw and image data types are converted into strings using a base 64
encoding.

= Numeric data is converted to string data, using the display format of
the field.

Refer to table 1-1 to see how UNIFACE converts data from UNIFACE
data types to XML element values in an XML stream. In general, data is
converted to the UNIFACE String data type, and the string is then
loaded into the XML stream using the procedure described below for
String data:

The original field values on a component are unchanged by xmi save.
Validation triggers are not fired by xnl save. The active path is not
changed by xm save.

Saving state information in an XML stream

If a DTD specifies meta information attributes for an element, meta
information about the modification and validation state is included in the
XML stream for that element.

You can include state with selected UNIFACE entities in an XML stream
by specifying state attributes in your DTD only for those entities that
require state information.

Triggers fired by xmlsave
The following triggers are fired by the xm save statement:
= Pre Save Occurrence

XML Stream Guide (Jun 2001) 1-25

UNIFACE V8.2

The Pre Save Occurrence trigger is fired immediately before an
occurrence is saved from a component into an xni st r eam The
occurrence is available and can be examined.
This trigger tunes the execution of xm save. You can use this trigger
to customize the process of saving a component into an xnl st r eam
For example, an occurrence can be excluded from the save, or the
value for a derived field can be calculated.

= Post Save Occurrence
The Post Save Occurrence trigger is fired immediately after an
occurrence is saved from a component into an xni st ream
This trigger tunes the execution of xrm save. You can use it to
customize the process of saving a component into an xni stream

1.4.2 Loading data from XML streams

The xm | oad statement extracts data from an XML stream and places
the data in fields painted on the component. The xmi | oad statement
uses a DTD and an element-to-field map to do this conversion.

Element values are converted into UNIFACE field values, as described
in the following table.

Refer to table 1-1 to see how UNIFACE converts data from UNIFACE
data types to XML element values in an XML stream. In general, data is
converted to the UNIFACE String data type, and the string is then
loaded into the XML stream using the procedure described below for
String data:

Loading state from an XML stream

UNIFACE uses attributes to determine the state of data in an XML
stream. If these attributes are specified in the DTD and are encountered
in the XML stream, the state specified in the attributes is applied to
occurrences loaded from the stream. If no state is defined in the stream,
UNIFACE treats all occurrences as new.

Data validation error messages can be present in the XML stream. If
UNIFACE encounters these, the On Error trigger is fired for each
validation error included in the stream. For example, the On Error
trigger could change the display color of a field to indicate a validation
error.

1-26

(Jun 2001) Three-tier development

1.4.3 Null values in

UNIFACE V8.2

For more information about XML stream state attributes, see
section 1.2.4 Attributes in XML streams.

Triggers fired by xmlload
The xn | oad statement fires the following triggers:

= Pre Load Occurrence
The Pre Load Occurrence trigger is fired immediately before an
occurrence is loaded from an xm st r eaminto a component. The new
occurrence is not yet available and cannot be accessed.
This trigger tunes the execution of xnl | oad and xm save. You can
use this trigger to customize the process of loading an xm st r eam
into a component.

= Post Load Occurrence
The Post Load Occurrence trigger is fired immediately after an
occurrence is loaded from an xm st r eaminto a component. The new
occurrence is available and can be accessed.
This trigger tunes the execution of xmi | oad. You can use it to
customize the process of loading an xm st r eaminto a component. For
example, an occurrence can be discarded, or the value for a derived
field can be calculated.

XML streams

Null fields are saved into XML streams as empty elements. This means
that a null field is indistinguishable from an empty string.

Null numeric fields

A null numeric field is saved into an XML stream as an empty element,
in the same way as any other data type. When the XML stream is loaded
into a component, the empty element is converted into a zero numeric
value.

XML Stream Guide (Jun 2001)

1-27

UNIFACE V8.2

Null values and absent elements

Fields in occurrences created by xmi | oad that do not have an XML
stream element mapped to them are treated as null fields. That is, when
retrievel/ reconnect merges the occurrences created from the XML
stream with database occurrences, the null fields do not overwrite the
database fields.

Included entities are an exception to this behavior. For more information,
see section 1.4.4 Included entities and XML streams.

1.4.4 Included entities and XML streams

During reconnection of disconnected record sets, occurrences of included
entities are completely overwritten by the data in the disconnected
record.

Caution: If there is no element in the XML stream for a given field of an
included entity, that field is emptied. This means that if all the data of an
included entity is not placed in an XML stream, data loss can occur when
the XML stream is reconnected. This restriction only applies to included
entities. For more information on how UNIFACE handles partial records
in XML streams, see section 1.4.3 Null values in XML streams.

Therefore, if any data from an included entity is required in an XML
stream, it is essential to include all the fields of the included entity in the
XML stream.

1.4.5 Application of DTDs to an XML stream

UNIFACE generates XML streams using the structural definitions in the
DTD specified by the xm save statement.

UNIFACE does not validate XML streams against the DTD declared in
the vari abl es or par ans blocks.

UNIFACE does not validate XML streams against the DTD specified in
the xm | oad statement.

1-28

(Jun 2001) Three-tier development

UNIFACE V8.2

Note: Future versions of UNIFACE could feature validation of XML
streams against the DTDs specified in Proc. To be certain of future
compatibility, ensure that your XML streams are valid against the DTDs
specified by these statements.

1.4.6 Default DTD mapping and mapping defined on a component

UNIFACE supports mapping of field and entity names to elements in
XML streams. This enables UNIFACE to transport values between XML
streams and component fields. For example, UNIFACE requires a
mapping structure to transport values between an XML element named
per sonNane and a field named NME.PERSON.

A default mapping can be defined in your application model, and
mappings can also be defined locally in Proc, as associative lists. For
more information, see section 5.2.3 Define a local mapping foraDTD and
section 5.1.7 Define a default mapping for a DTD.

The default mapping is applied to an XML stream by xmi | oad if the /
i ncl def map switch is specified. The local mapping is applied if a
mapping list is included as an argument for xni | oad.

If both the local and default mappings are specified, the local mapping is
combined with the default mapping. If the default and local mappings
conflict, then the local mapping takes precedence.

If a mapping scheme addresses fields that are not available on a
component, or elements that are not in the XML stream, that part of the
mapping is ignored.

1.4.7 DTD mapping lists

DTD mapping lists map the values of elements in a DTD stream to fields
on a component.

Default DTD mapping lists can be defined in the DTD Editor. DTD
mapping lists can also be defined in Proc, for use in the Proc statements
xm | oad and xnl save.

DTD mapping lists are UNIFACE associative lists. Each list item has the
following syntax:

"ElementName=TargetName;..."

XML Stream Guide (Jun 2001)

1-29

UNIFACE V8.2

Where:

e ElementName—is the name of an element in the DTD. ElementName
is case-sensitive.

= TargetName—is the name of a field or entity. The fields or entities do
not have to be present on the target component. Values that cannot
be mapped to a painted field are ignored. TargetName is not case-
sensitive.

Order of DTD mapping list items

When creating a mapping list, the order of the list items can be
significant if you are mapping data to UNIFACE entities with
overlapping field names. In this situation, you should ensure that
mapping list follows the order in which elements first appear in the XML
stream.

For example, if you are mapping an XML stream to the entities
COUNTRY and PERSON, and both these entities have a field NAME,
then the order of the mapping list is significant. If COUNTRY data
appears first in the XML stream, then your mapping list should specify
a mapping for NAME.COUNTRY before specifying a mapping for
NAME.PERSON.

1-30

(Jun 2001) Three-tier development

Chapter 2

UNIFACE V8.2

Modifications to the Repository
for XML streams

The Repository has been extended to store information about DTDs and
the default mapping of data between XML streams and components.

A new entity, UCDTYP.DICT, has been added to the DICT model in the
meta dictionary. This section describes the parts of the meta dictionary
that have been modified to support XML streams.

UCDTYP.DICT

UCDTYP contains information on DTDs in application models. Each
occurrence is identified by the name of the DTD, and the application
model.

Table 2-1 Fields for entity UCDTYP.DICT.

Field Name Type

In DB? Description / Comment Interface / Syntax / Layout

UTIMESTAMP E

UCOMPSTAMP E

UDTDNAME

SS

UMODELNAME

Y Last Update I: @STAMP
S:
L:

Y Last Compilation I: @STAMP
S:
L:

Y Short Name of DTD I: @NAME32
S:
L:

Y Application Model Name I: @NAME32
S:
L:

XML Stream Guide (Jun 2001)

2-31

UNIFACE V8.2

Table 2-1 Fields for entity UCDTYP.DICT.

Field Name Type In DB? Description / Comment Interface / Syntax / Layout
UVERS S Y Version Number I: C12
S:
L:
UDESCR SS Y Description I: @DESCR
S:
L:
UDTDTYPE S Y DTD Type I:C3
Reserved for future use; S:
currently the default, and only | :
allowed value, is DTD, meaning
an XML standard-compliant
DTD
UDTDFILE SS Y Name of DTD file I: C40
The file to which the DTD can S:
be mirrored on disk L:
UDEFMAP SS Y Default Mapping I: @B196
Associative list of mappings S:
L:
UDTDREF SS Y Reference I: @B193
S:
L:
UCOMMENT SS Y Comments I: @B194
S:
L:
UDEFINTION SS Y DTD Data I: @B195
Textual representation of the S
DTD Data L:
Table 2-2 Keys for entity UCDTYP.DICT.
Key Type Key field name
1 Primary UDTDNAME,
UMODELNAME
2-32 (Jun 2001) Modifications to the Repository for XML streams

UNIFACE V8.2

Table 2-3 Foreign keys for entity UCDTYP.DICT.

Foreign key field name One entity Index Relationship name

UMODELNAME UCSCH N U_UCSCH_UCDTYP_DICT

XML Stream Guide (Jun 2001) 2-33

UNIFACE V8.2

2-34 (Jun 2001) Modifications to the Repository for XML streams

Chapter 3

UNIFACE V8.2

UNIFACE support for XML and
DTD syntax

This is a description of UNIFACE support for DTD and XML syntax as
defined in the XML standard.

3.1 Attribute declarations

UNIFACE supports a subset of the attribute declarations that are
available in the XML standard. UNIFACE supports the attribute
declarations required for inter-component communication using XML
streams, namely declarations for attributes for processing information,
and declarations for namespaces.

The syntax supported by UNIFACE is described below, and a description
of the full syntax is also given for comparison.

Attribute declaration syntax as supported by UNIFACE (expressed
in UNIFACE conventions)

You can use the following attribute declarations in your DTDs:

e <! ATTLI ST EntityElement i d CDATA #REQUI RED>

e <! ATTLI ST EntityElement cr c CDATA #REQUI RED>

e <! ATTLI ST EntityElement st at us CDATA #REQUI RED>

e <! ATTLI ST EntityElement val err CDATA #| MPLI ED>

e <! ATTLI ST FieldElement val err CDATA #| MPLI ED>

e <! ATTLI ST ElementName AttributeName "AttributeVValue" #F|I XED>

Where:

XML Stream Guide (Jun 2001)

3-1

UNIFACE V8.2

= EntityElement is the name of an element mapped to a UNIFACE
entity

= FieldElement is the name of an element mapped to a UNIFACE field

= ElementName is either an EntityElement or FieldElement

= AttributeName is the name of the attribute

= AttributeValue is the value of the attribute

Use #FI XED attributes to declare namespaces for your XML element
names.

XML standard syntax (expressed in UNIFACE conventions)
The syntax for attribute declarations specified in the XML standard is:

<! ATTLI ST ElementName AttributeName TokenizedType | CDATA |
ValueList {#REQUI RED| #FI XED| #| MPL| ED} DefaultValue>

Where:

= ElementName—is the name of the element to which the attribute
belongs

« Attributename—is the name of the attribute

= CDATA:-is string data

= ValueList—is a list of optional values, with the following structure:
(Value; | Value, | Values...)

= TokenizedType—is, for example, a unique 1D number, or the name of
an entity declared within the XML document

< REQUIRED—declares the attribute is always present with a value

= #FIXED—declares that the attribute is always present and always
has the default value

= #IMPLIED—declares that no default value is provided for the
attribute

= DefaultValue—is the default value of the attribute. A default value
cannot be specified for #REQUI RED or #| MPLI ED attributes.

The XML standard also allows an alternative syntax for attribute
declarations, whereby all attributes are declared for an element in one
<! ATTLI ST> declaration. This alternative syntax is not supported by
UNIFACE.

3-2

(Jun 2001) UNIFACE support for XML and DTD syntax

UNIFACE V8.2

3.2 Element declarations

UNIFACE supports a subset of the element declarations available in the
XML standard. UNIFACE supports the element declarations required
for intercomponent communication using XML streams, namely
declarations for root elements, elements representing entities, and
elements representing fields.

The syntax supported by UNIFACE is described below, and a description
of the full XML standard syntax is given for comparison.

3.2.1 Root element declarations

All XML streams have a root element that contains all the other elements
in the stream.

You can declare the root element of your DTD as follows:

<! ELEMENT RootName (OuterEntity{MultiplicityOperator}) >

where:

< RootName is the name of the root element of the entity. The root
element is not mapped to any UNIFACE object, so it is conventional
to give the root element the same name as the DTD or to name it
ROOT.

= OQuterEntity is the name of the element mapped to the outermost
UNIFACE entity in the XML stream.

= MultiplicityOperator is a single character that defines how many
times an element can occur in the stream. The available options are:
= ?—the element can occur zero or one times in the stream.
= *—the element can occur zero, once or many times in the stream.
< +—the element can occur once or many times in the stream.
= No operator—the element must occur exactly once in the stream.

3.2.2 Element declarations for UNIFACE entities

UNIFACE entities are represented as XML elements in an XML stream.
An element that represents an entity contains elements that represent
the inner entities and fields of that entity.

You can declare elements for entities in your DTDs by using the following
syntax:

XML Stream Guide (Jun 2001) 3-3

UNIFACE V8.2

<! ELEMENT EntityName ({InnerEntity, {MultiplicityOperator} |
FieldName; K, InnerEntity, {MultiplicityOperator} | FieldName, }...{,
InnerEntity,, {MultiplicityOperator} | FieldName, }) >

Where:

= EntityName—is the name of the element mapped to the UNIFACE
entity.

= InnerEntity—is the name of an element mapped to an inner entity.

« FieldName—is the name an element mapped to a field of the
UNIFACE entity.

3.2.3 Element declarations for UNIFACE fields

UNIFACE fields are represented as XML elements in an XML stream.
An element that represents a field contains PCDATA (string-type data),
and no child elements.

<! ELEMENT FieldName (#PCDATA) >

Where FieldName is the name of an element representing a field.
FieldName must be specified in the declaration of an entity element.

3.2.4 XML standard syntax (expressed in UNIFACE conventions)

The XML standard'’s syntax for element declarations is:
<! ELEMENT ElementName (Content) >
Where:

e ElementName—is the name of the element
= Content—is the content allowed for that element. This can be one of
the following:

= EMPTY—specifies that the element has no content.

= ANY—specifies that there are no restrictions on the content of the
element.

= PCDATA—specifies that the element contains parsed character
data (string data).

= ContentList—this is a list of child elements and PCDATA sections
that the element can contain.

ContentList has the following format:

34

(Jun 2001) UNIFACE support for XML and DTD syntax

UNIFACE V8.2

{(}element; MultiplicityOperator connector element,
MultiplicityOperator... connector element,,
MultiplicityOperator{) MultiplicityOperator}
Where:

= element—is the name of a child element, or is a nested ContentList
= connector—is either a comma (,), or a pipe (]).

3.3 Miscellaneous DTD and XML syntax support

3.3.1 Comments

3.3.2 White space

This is a description of UNIFACE support for a range of DTD and XML
syntax issues.

The DTD syntax for comments is not supported by UNIFACE. Instead,
place comments about the DTD in the Comments field in the Define DTD
Properties form.

UNIFACE does not generate comments in XML streams. If comments
are encountered in an XML stream, the comments are ignored by
xm | oad.

The DTD Editor supports the use of white space (tabs and spaces) for
DTDs. All white space is replaced by a single space character when the
DTD is edited in the DTD Wizard.

The XML standard allows hard return characters in white space. This is
not supported by the DTD Editor or by the DTD Wizard.

3.3.3 Processing Instructions

Processing instructions are not generated by UNIFACE, and are not
processed.

XML Stream Guide (Jun 2001)

3-5

UNIFACE V8.2

If processing instructions are encountered in an XML stream, the
comments are ignored by xm | oad.

3.3.4 Unique element names

The XML standard allows an element to be declared once and to be used
in several elements. For example, a par agr aph element could be defined
and used as part of the content of chapt er and pr ef ace elements. This
is not supported by UNIFACE. An element can only be used within the
content of a single parent. The names of child elements must be unique

within the DTD.

3.3.5 XML entities

XML entities are not supported by UNIFACE, with the exception of the
Predefined entities specified in the XML standard.

The table gives replacement texts for each predefined entity specified in
the XML standard. An XML parser replaces the entities with the
replacement texts after parsing the XML source.

Table 3-1 Predefined entities.

Predefined entity

Replacement text

> ;
<
&anp;
'
" ;

Parameter entities, which are used exclusively in DTDs, are not

supported.

3-6

(Jun 2001) UNIFACE support for XML and DTD syntax

UNIFACE V8.2

3.3.6 Document subdeclarations

The document subdeclaration is an extension to the DTD, stored in the
XML document itself. The document subdeclaration is generally used to
store definitions of XML entities.

Document subdeclarations are not used by UNIFACE, and are ignored
during processing of XML streams.

3.4 Sample DTDs and XML streams

3.4.1 A basic DTD and XML stream

The following DTD is a highly simplified sample, that lacks processing
information attributes and namespace declarations. Processing
information attributes are required to reconnect disconnected record sets
to existing data for processing or storage in a database. Namespace
declarations are not required, but are a good practice for ensuring that
your elements names are unique in an XML stream.

The DTD defines an XML stream for a single outer occurrence of country
data, with zero, one, or many occurrences of state (province) data. Due to
the lack of processing information, an XML stream based on this DTD is
not suitable for disconnected record sets, but is suitable for static data
that is not maintained.

The DTD is based on a more sophisticated DTD, described in section 3.4
Sample DTDs and XML streams.

<BH.EMENT Root (Qountry)>

<IBLBEMENT Qountry (Qountry: Guntry Id, Sate*,
Gount ry: Gode, Gountry: Nane, Gountry: Has S ate) >
<IBLBEMENT Qountry: Gountry_| d (#PCDATA) >

</HEMENT Sate (Sate:Sate |d, Sate:Quntry_|d,
Sate: Gode, Sate: Nane) >

<TBHBEMENT Sate:Sate |d (#PCDATA) >

</HEMENT Sate: Quntry | d (#PCDATA) >

<IBLBEMENT Sate: Gode (#PCDATA) >

<I ELEMENT Sate: Nane (#PCDATA) >

XML Stream Guide (Jun 2001) 3-7

UNIFACE V8.2

<IBLBMENT Qountry: Gode (#PCDATA) >
<! BLEMENT Qountry: Nane (#PCDATA) >
<IBLBEMENT Qountry: Has_State (#PCDATA) >

An XML stream generated using this DTD

The following XML stream is generated from the same data as the XML
stream in section 3.4 Sample DTDs and XML streams. The differences
between these streams is due to the differences in the DTDs.

The DTD declares that the Root element contains a single occurrence of
Count ry, so the XML stream generated using this DTD only contains
one occurrence of Country.

<?xnh versi on="1.0"?>
<Root >
<Qount ry>
<Quntry: Guntry_| d>7Z9RN42HN3HY Gount ry: Gountry_| d>
<Sate>
<Sate: Sate | d>7Z9RN QRO State: Sate | d>
<Sate: Guntry_| d>7Z9RNA2HNF3H/ S at e: Gount ry_| d>
<S at e: Gode>CALK/ S at e: Gode>
<S at e: Name>Gaut eng</ S at e: Nane>
< Sate>
<Sate>
<Sate:Sate | d>7Z9RN ARSMR</ Sate: Sate | d>
<Sate: Quntry_| d>7Z9RNA2HNF3HY S ate: Gount ry_| d>
<S at e: Gode>MPLK/ S at e: Gode>
<S at e: Nane>Mpunal anga</ S at e: Nane>
</ Sate>
<Qount ry: Gde>ZA</ Gount ry: Gode>
<Qunt ry: Nane>Sout h Af ri ca</ Gount ry: Nane>
<Qountry: Has S at e>T</ Qount ry: Has_ S at e>
</ Qountry>
</ Root >

3-8

(Jun 2001) UNIFACE support for XML and DTD syntax

UNIFACE V8.2

3.4.2 Sample DTD and XML stream

The following DTD defines an XML stream for country and state data.
Each country can have zero, one or many states (provinces). The DTD
includes a default mapping to two entities, COUNTRY.ORD and
STATE.ORD.

The DTD uses namespaces to ensure that element names are unique, and
uses the processing information attributes provided by UNIFACE for all
elements in the XML stream. Using this DTD, data can be sent to
components as a disconnected record set, and then reconnected to
existing records for processing or storage.

< BLBEMENT Root (Qount ry*) >

<IEHEMENT Qountry (Qountry: Guntry |d, Sate*, Gountry: Gode, Gountry: Nane,
Gountry: Has S ate) >

<I ATTLI ST Qountry id CDATA #REQJ RED>

<I ATTLI ST Gountry crc (DATA #REQJ RED>

<I ATTLI ST Gountry status CDATA #REQJ RED>

<I ATTLI ST Qountry val err CDATA # MPLI ED>

<! ATTLI ST Gountry xnhns: Gount ry CDATA #H XED "htt p: // acne. comt Gount ry" >
<IBLBEMENT Qountry: Gountry_| d (#PCDATA) >

<! ATTLI ST Gountry: Gountry_Id val err CDATA # MPLI ED>

<THBEMENT Sate (Sate:Sate |d, Sate:Quntry |d, Sate:ode, Sate: Nane) >
<IATTLI ST Sate id (ATA #REQU RED>

<I ATTLI ST Sate crc (ATA #REQU RED>

<IATTLI ST Sate status (DATA #REQJ RED>

<I ATTLI ST Sate val err CDATA # MPLI ED>

<I ATTLI ST Sate xnins: Sate CDATA #F XED "http://acne. comt S at ">
<|HEMENT Sate:Sate |d (#P(DATA) >

<IATTLI ST Sate: Sate |d val err CDATA # MPLI ED>

</HEMENT Sate: Guntry | d (#PCDATA) >

</ ATTLI ST State: Qountry_l d val err CDATA # MPLI ED>

<I ELEMENT S ate: Code (#PCDATA) >

<I ATTLI ST S ate: Gode val err CDATA # MPLI ED>

<IBLBEMENT Sate: Nane (#PCDATA) >

<l ATTLI ST S ate: Nane val err CDATA # MPLI ED>

<! ELEMENT Gount ry: Gode (#PCDATA) >

XML Stream Guide (Jun 2001)

39

UNIFACE V8.2

<I ATTLI ST Qountry: Code val err CDATA # MPLI ED>

<! BELEMENT Gountry: Nane (#PCDATA) >

<I ATTLI ST Qountry: Nare val err CDATA # MPLI ED>
<IBLBEMENT Qountry: Has_State (#PCDATA) >

<! ATTLI ST Gountry: Has_State val err CDATA # MPLI ED>

Default mapping

The default mapping for this DTD maps the XML elements to COUNTRY
and STATE entities in the ORD application model.

Figure 3-1 Default mapping for a DTD.

§) DTD Default Mapping |

DTD kem Mame UMIFACE Mame
Courtry| COUMTRY B Nesay
Country: Country_ld D COUMTRY
State STATE Delete
State; State Id D =TATE
State: Country_Id COUNTRY D STATE
State: Code CDSTATE
State:Mame M STATE
Country:Code CDLCOUMTRY
Country:Mame Mk COLMTRY
Country:Haz_State STATECOUNTRY
I
Ok Cancel

An XML stream generated using this DTD

The following XML stream was generated using this DTD. For an
example of a different XML stream generated from the same data, see
section 3.4.1 A basic DTD and XML stream.

<?xnh version="1.0"?>
<Root >

<Quntry xnhns: Gount ry="htt p: //acne. cond Gount ry"
i d="f PIQGdaOJIADI| VOYZSA=="

3-10

(Jun 2001) UNIFACE support for XML and DTD syntax

UNIFACE V8.2

crc="E343DACC' status="est">
<Qountry: Guntry_| d>7Z9RN42HNF3H Gount ry: Gountry_| d>
<Sate xnins: Sate="http://acne. com S at "
i d="f DJQdaOvJCBUNVM BPOG—="
crc="631CAF4B' status="est">
<Sate:Sate | d>7Z9RN QRO State: Sate | d>
<Sate: Guntry_| d>7Z9RNA2HNF3H/ S at e: Gount ry_| d>
<S at e: Gode>CALK/ S at e: Gode>
<S at e: Nane>Gaut eng</ & at e: Nane>
< Sate>
<Sate xnins: Sate="http://acne. com S at "
i d="f SBIQdaO/ICBUNM NW="
crc="8005F953" stat us="est">
<Sate:Sate | d>7Z9RN ARSM</ Sate: Sate | d>
<Sate: Quntry_| d>7Z9RNA2HNF3HY S at e: Gount ry_| d>
<S at e: Gode>MPLK/ S at e: Gode>
<S at e: Nane>Mpunal anga</ S at e: Nane>
</ Sate>
<Qount ry: Gde>ZA</ Gount ry: Gode>
<Qunt ry: Nane>Sout h Af ri ca</ Gount ry: Nane>
<Quntry: Has_S at e>T</ Gount ry: Has_St at e>
</ Qountry>
<Quntry xnhns: Gount ry="htt p: //acne. com Gount ry"
i d="f PIQGdaOJIODII VOt CB="
crc="1AE5F06B" stat us="est">
<Qountry: Guntry_| d>7Z9RN42HMN </ Gount ry: Gountry_| d>
<Sate xnins: Sate="http://acne. com S at e"
i d="f 9JzdaOvJ CBUNVMKRTSA=="
crc="47FBAB02" status="est">
<Sate:Sate | d>7Z9RN QRO Sate: Sate | d>
<Sate: Guntry_| d>7Z9RNA2HMN </ S ate: Gountry_| d>
<S at e: Gode>CHY S at e: Gode>
<X at e: Nane>Chonbe</ & at e: Nane>
< Sate>
<Qunt ry: Gode>Zl M/ Qount ry: Gode>
<Qount ry: Nane>Zi nbabwe</ Gount ry: Nane>
<Quntry: Has_S at e>T</ Gount ry: Has_St at e>

XML Stream Guide (Jun 2001)

3-11

UNIFACE V8.2

</ Qountry>
</ Root >

3.4.3 Element declarations for entities

The following DTD declares an entity COUNTRY with the fields: ID, CD,
NM, and STATE. COUNTRY contains an inner entity, STATE, which
has the following fields: ID, CD, and NM. The declaration takes place in
the following steps:

= Declare the element as the child of an existing element.

= Define the content of the element. You must define all the elements
that are allowed to occur within the start and end tags of the element.

The relevant lines in the DTD are emphasized in the following DTD
extract:

<! ELEMENT Root (Country*)>

<! ELEMENT Country (Country: Country_Ild, State*, Country: Code,
Country: Nane, Country: Has_State)>

<I ATTLI ST Qountry id CDATA #REQJ RED>
<l ATTLI ST Gountry crc CDATA #REQJ RED>

<IELEMENT State (State:State_ld, State: Country_ld, State: Code,
St at e: Nane) >

Note: The DTD uses logical names for the fields and entities. For more
information about the DTD in this example, including information about
the mapping structure used for the COUNTRY and STATE entities, see
section 3.4.2 Sample DTD and XML stream.

<IELEMENT Root (Country*)>

This line declares that Count ry is the only child element of the root
element, named Root . The * operator indicates that the Country
element can occur zero, once, or many times in the stream.

<IELEMENT Country (Country:Country_ld, State*, Country:Code,
Country:Name, Country:Has_State)>

This line declares the content of the Count ry element.

3-12

(Jun 2001) UNIFACE support for XML and DTD syntax

UNIFACE V8.2

It also declares that the St at e element is a child of Count ry. The *
operator for St at e indicates that St at e elements can occur zero, once,
or many times inside each Count ry element.

Note: The names of the fields of Country are prefixed with Country: to
ensure that the names of elements are unique in the DTD.

<IELEMENT State (State:State_Id, State:Country_Id, State:Code,
State:Name)>

This line declares the content of the St at e element. St at e does not have
any inner entities, so the content of St at e is exclusively a list of elements
representing the fields of St at e.

3.4.4 Unique element names and namespaces

The names of all elements in an XML stream must be unique. For
example, the entities STATE and COUNTRY both have an ID field. A
different element must be used for ID.STATE and ID.COUNTRY, as
shown in the DTD below: ID.STATE is represented by

State: State_Id, and ID.COUNTRY is represented by

Country: Country_I1d.

For more information about the DTD used in this example, see
section 3.4.2 Sample DTD and XML stream.

Namespaces

As an additional step to ensure that all element names are unique in the
DTD, the elements representing fields are prefixed with the name of
their parent element (that is, the name of the element representing their
entity).

You can use this naming convention informally, by defining the element
names with an Entity: prefix, or you can formally define the entity name
prefix as a namespace using the syntax shown below. For more
information about namespaces and the XML standard, see the World
Wide Web Consortium.

<I ELEMENT Root (Qount ry*)>

<IBLBEMENT Qountry (Country: Country_ld, Sate*, Qountry: Gde, Guntry: Nang,
Qountry: Has_S at e) >

<! ATTLI ST Qountry i d CDATA #REQU RED>

XML Stream Guide (Jun 2001) 3-13

UNIFACE V8.2

<l ATTLI ST Gountry crc CDATA #REQJ RED>
<I ATTLI ST Qountry status CDATA #REQJ RED>
<I ATTLI ST Qountry val err CDATA # MPLI ED>

<! ATTLI ST Country xm ns: Country CDATA #FI XED "http://acne. conl
Country">

<'ELEMENT Gountry: Gountry_ld (#PCDATA) >
<I ATTLI ST Qountry: Gountry_ld val err CDATA # MPLI ED>

<|HBEMENT Sate (State: State_Id, Sate:Quntry_|d, Sate: Gde, Sate: Nane) >
<IATTLI ST Sate id (DATA #REQU RED>
<I ATTLI ST Sate crc (ATA #REQU RED>

3.4.5 DTDs and mapping

The following DTDs describe XML streams that can be used with the
CAT.ART entity.

UNIFACE can require additional information to map elements ina DTD
to field and entity names, if the element names do not match qualified or
unqualified field and entity names. This information is defined in a
mapping list.

CAT.ART

CAT.ART is an entity describing categories of products in a catalog. The
entity has the following fields:
« |D—a technical primary key.
For example, "gwERTY12345".
= CD—a semantic candidate key.
For example, "MSCPUMPS".
< DESCR—a description field.

For example, ‘Multi-speed centrifugal pumps and water extraction
systems’.

BASICDTD.ART

This DTD has been generated by the DTD Wizard in the Development
Environment.

3-14

(Jun 2001) UNIFACE support for XML and DTD syntax

UNIFACE V8.2

No mapping is required between the DTD and the fields of CAT.ART
because the element names match field and entity names.

<! BLEMENT BASI CDTD (CAT*) >
<|ELEMENT CAT (1D D DESR >

<! ATTLI ST CAT i d CDATA #REQU RED>

<! ATTLI ST CAT crc C(DATA #REQUJ ReD>

<I ATTLI ST CAT status (DATA #REQU RED>
< ATTLI ST CAT val err CDATA # MPLI ED>
< ELEMENT | D (#PCDATA) >

<I ATTLI ST I D val err CDATA # MPLI ED>

< ELEMENT (D (#PCDATA) >

<I ATTLI ST D val err CDATA # MPLI ED>

<! ELEMENT DESCR (#PCDATA) >

<! ATTLI ST DESCR val err (DATA # MPLI ED>

BASIC_NO_ATTSDTD.ART

If the CAT.ART entity is read only (for example, the entity is set to No
Updates in the application model), there is no need to include any of the
UNIFACE-generated attributes with the XML stream. In this case, the
BASIC_NO_ATTSDTD.ART DTD could be used:

<! ELEMENT BASI C NO ATTSDID (CAT*) >
< ELEMENT CAT (ID (D DES(R >

<I ELEMENT | D (#PCDATA) >

<! ELEMENT D (#PCDATA) >

<! ELEMENT DESCR (#PCDATA) >

RENAMEDDTD.ART

All the elements in this DTD have been renamed. This can be done to
enhance the readability of the DTD, or to separate the DTD from
component field and entity names.

<! B BMENT RENAMECDITD ((cat egor y*) >

<ELEMENT category (category id, category code, description)>
<I ATTLI ST category id CDATA #REQJ RED>

<l ATTLI ST category crc (DATA #REQJ RED>

<I ATTLI ST category status CDATA #REQU RED>

< ATTLI ST category val err CDATA # MPLI ED>

< BLEMENT category id (#P(DATA) >

XML Stream Guide (Jun 2001) 3-15

UNIFACE V8.2

<I ATTLI ST category_id val err CDATA # MPLI ED>
<! BLEMENT cat egory_code (#PCDATA) >

< ATTLI ST cat egory_code val err CDATA # MPLI ED>
< BLBMENT descri ption (#P(DATA) >

<! ATTLI ST description val err (DATA # MPLI ED>

Mapping is required between elements in this DTD and the fields of
CAT.ART because the element names do not match the field names:

$MAPPI NGB = " cat egor y=CAT. ART; cat egor y_i d=I D. CAT,

cat egory_code=CD CAT. descri pti on=DESCR CAT"

This mapping can be used as follows:

xnh | oad XM._PARAMETER " DTD RENAMECDID ART', $MVAPPI NGB

CAT.PRODUCTS

CAT.PRODUCTS is an entity in another application model with the
same purpose as CAT.ART. CAT.PRODUCTS has the following fields:
= PK—the technical primary key

« |D—the category code

e CAT_TEXT—a description field

e CAT_ICON—a small icon used to identify a category

Note: If a component containing CAT.PRODUCTS received an XML
stream using the BASICDTD.ART DTD, the ID element would be
incorrectly mapped to ID.CAT. No other data would be loaded from the
XML stream.

To correctly retrieve the data from an XML stream that uses
BASICDTD.ART, define a mapping of XML element names to the entity
and field names:

$MAPPI NG = " CAT=CAT. PRIDLCTS,_ | D=PK; (D=1 D DESCR=CAT_TEXT"
This mapping can be used as follows:
xnh | oad XM._PARMVETER " DID BAS CDTD ART", $MAPPI NGB

3-16

(Jun 2001) UNIFACE support for XML and DTD syntax

Chapter 4

UNIFACE V8.2

XML transformations

The following topics describe how the structure of an XML stream can be
manipulated and transformed by the use of XSLT (Extensible Stylesheet
Language for Transformations).

XSLT enables you to access the data in any XML stream, and also
provides a standard technique for converting XML data into other
formats, such as text, HTML, and lists. XSLT also enables you to convert
XML data produced by UNIFACE into other XML formats. This provides
support for XML standards, such as B2B messaging standards.

4.1 XSLT (XSL Transformations)

The Extensible Stylesheet Language for Transformations (XSLT) is an
XML-based language developed by the World Wide Web Consortium.
XSLT provides a standard language for expressing transformations to
the structure of XML streams. Given a well-formed XML stream as
input, XSLT can be used to construct an output, either in XML or other
character-based output formats.

The following transformations are typical of the uses of XSLT:
e Transforming XML into HTML for display on the Web
= Transforming XML into text formats, such as comma-separated lists
= Transforming XML into a new XML structure. This includes:
= Altering nodes in the XML stream. For example, converting
elements to attributes, or adding or removing a node.

= Changing the precedence of items in the XML stream. For
example, sorting the content of an XML stream alphabetically.

XML Stream Guide (Jun 2001)

41

UNIFACE V8.2

4.2 UNIFACE XSLT tools and components

UNIFACE provides component USYSXSLT to transform XML streams
at run time.

XSLT files can be edited and tested using the XSLT Workbench.

4.3 How XSLT works

XSLT is a rule-based language. An XSLT processor matches patterns in
the input XML stream with rules in the XSLT stylesheet, and applies an
output template specified by the rule. For example, to find an attribute
named myAt t ri but e and output the attribute’s value in an element
named <nyEl ermrent >, you could use the following template:

<xsl:tenpl ate match="@yAtribute"> <l--Apply this tenplate to nyAtribute. -->
<xsl: el enent nane="nyH enent"> <!--Qeate el enent nyH enent. -->

<xsl:val ue-of select="."/> <l--Insert
the value of nyAtribute.-->

</ xsl : el enent >

</ xsl :tenpl at e> <l--Bd
of tenplate.-->

This XSLT template creates the following fragment of XML.:

4-2

(Jun 2001) XML transformations

UNIFACE V8.2

... <nyH enent >At t ri but eVal ue</ nyH enent >. . .

Figure 4-1 XSLT templates applied to an XML stream.

B ¥SLT Workbench

NEIEINEE

Walidation File [flatten_in.dtd

Source XML flatten_in.oml

D& |

HKELT File: flatten01 xal

=
NERE
validation File [fistten_ot oo 2|

Zesult XML flatten_out xml

=7xml wersion="1.0"7>

=PERZOM age="35" gender="m"=
=FIRSTHAME=Peter<FIRSTMAME=
<L ASTHAME=Pan=/LASTNAME=

|- |

<DEGREES=
=DEGREE=
=UNIYERSITY = O ford=/NIVERSITY =
=TYPE=Bachelor of Science=TYPE=
=AW ARDED=1965=/AWARDED>
=IDEGREE=
<DEGREES=
=PERZON-

o

=xzlapplytemplates select="@**"r=
=feslcopy=
=fxaltemplate=

[|

=xzltemplate match="PERSON* | DEGREES" name="mer;
=xElcopy=
=xzl cal-template name="mergeElementalues"t=
=fxslcopy=
=izl template=

=xzltemplate match="i@*"=
=xslelement name="{name1}"=
=xzl value-of select="."t=
=xsl element=
=ixzltemplate=

=xzltemplate name="concstensteElemertiames"s
=xzl far-gach select=""=
=xskelement name="{concat(name ..}, name(.J) "=

=zl call-template name="mergeEIememValues“.b_I;l
3

dl |

=7xml werzion="1 0" encoding="is0-8859-1"7=
=PERESON=
=ayE=3o=lages
=gender=m=/gender=
<FIRSTHAME=Peter=FIRSTHAME=
<L ASTHAME=Pan=/LASTHMAME=

B

=DEGREES=Ciford Bachelor of Science 1965=<uDE
=PERZCM=

dl |

I;I'_I;IL

The following transformations are highlighted in the illustration:

The age and gender attributes are converted to elements <age> and

<gender >,

In the source XML, element <HOVE> contains <STREET>, <Cl TY>,

and <COUNTRY>. In the Result XM

L pane, the <HOVE> element is

removed, and the child elements of <HOVE> are output as

<HOVESTREET>, <HOVECI TY> and

<HOVECOUNTRY>.

The content of source element <DEGREES> is output as a single

element value. The same template

also outputs the <FI RSTNAME>

and <LASTNAME> elements (an XSLT template can apply to many

parts of a source XML stream).

XML Stream Guide (Jun 2001)

UNIFACE V8.2

4.3.1 Learning more about XSLT

XSLT is a rich language with many statements and functions. The
language is unique in several respects, such as its treatment of variables,
the data types allowed, and the handling of processing flow. As such it is
recommended to consult specialist sources devoted to XSLT.

The specification for XSLT is issued by the World Wide Web Consortium.

For examples of XSLT stylesheets, see XMLTRANSFORM in the
UNIFACE Library.

4.4 XSLT Workbench

The XSLT Workbench is a tool for creating and testing XSLT stylesheets.
The XSLT Workbench is divided into the following sections:

= Source XML—displays the test data for testing the XSLT file

4-4

(Jun 2001) XML transformations

UNIFACE V8.2

e XSLT File—displays the XSLT file

= Result XML—displays the XML resulting from running the
transformation

Figure 4-2 XSLT Workbench.
LT Workbench

S=iml o] SEIEIE ol & =

Walidation File [fiatten_in.dtd

validation File [fistten_out. ot 2|

Source XML flatten_in xml XELT File: flatten0d sl

wesult XML flatten_out xoml

=7xml version="1.0"7?= ;I =xslapply-templates select="g@**"= ;I =7l version="1.0" encoding="iz0-3559-1"7= ;I
=PERZOMN age="332" gender="m"= =fxslcopy= =PERZCMN=

=FIRSTHAME=Peter=FIRSTNAME= =fxsltemplate= =age=35=lages

=L ASTHAME=Pan=/LASTHNAME= =gender=m=igenders

=HOME= =xzltemplate match="FERZOMN* | DEGREES" name="mer{ =FIRSTHAME=Peter<FIRSTHAME=

=STREET=56 YWoodland Drive=/STREET: =xsl copy= =L AETHAME=Pan=/LASTRHAME-

=CITY =Boston=ACITY = =xzlcall-template name="mergeElement'Values"t= =HOMESTREET=5E Wioodland Drive=/HOMESTREET

=COUNTRY =USA=COUNTRY = =fxzsl copy= =HOMECITY =Boston=MHCOMECZITY =

=HOME:= =fesltemplates =HOMECOUMNTRY =US A= HOMECOUNTR Y =
=DEGREES= =DEGREES=Cwford Bachelor of Science 1965<0DE
=DEGREE= =xsltemplate match="PERSONHOME" name="invokeCon =/PERSCN=

=URIVERSITY =Crcford=/UNIYERSITY =

=xzl calltemplate name="concatensteElementhames"):

=TYPE=Bachelor of Science=/TYPE= =hsltemplate=

=ANARDED=1965=2 W ARDED=

=/DEGREE= =xsltemplate match="@*"=
=DEGREES= =xzlelement name="{name()}"=
=PERSON=

=xslvalug-of select=""#=
=hxsl element= o
=fxsltemplate=

=xzltemplate name="concatensteElementiames"=
=xzl for-each select=""=

=xslelement name="{concat(nama(..), name(.)) "=

¥ =xshcall-template name="mergeElementalues"l= =
1] | » | | 3 4|

|

Source XML pane

Use this part of the XSLT Workbench to create, load, edit and save XML
files (with, by default, an . xm file name extension). When an XSLT file
is tested, the XML file in this pane is used as an input stream.

Clicking Validate validates the Source XML, using the validation file
specified in the Validation File field.

XML Stream Guide (Jun 2001) 4-5

UNIFACE V8.2

4.5 USYSXSLT

XSLT File pane

Use this part of the XSLT Workbench to create, load, edit, and save XSLT
files (with, by default, an . xs| file name extension). This pane also
provides button Test XSLT to activate the XSLT processor component
USYSXSLT.

The Test XSLT button transforms the Source XML using the XSLT File,
and display the results in the Result XML pane. (The USYSXSLT
component is supplied with the XML stream loaded into the Workbench,
and the path to the XSLT file.)

Result XML pane

This pane displays the result of a transformation. Normally the result is
another XML file, but could be another text-based format. This pane
allows you to save the transformation output as a file, and to clear the
screen.

Clicking Validate validates the Result XML, using the validation file
specified in the Validation File field.

Note: When using menu commands to save, close or open files, remember
that the menu command applies to the pane that currently has focus.

USYSXSLT is a UNIFACE component that provides services for the
transformation of XML streams using XSLT stylesheets.

USYSXSLT uses the Xalan XSLT processor from the Apache Software
Foundation. Xalan is a Java-based application that implements the
XSLT specification issued by the World Wide Web Consortium.

System requirements
USYSXSLT has the following system requirements:

= Operating system—UNIX, or Microsoft Windows (versions 95, 98,
2000 and NT)

< Java runtime environment—Sun Java Runtime, versions 1.2.2 or
higher.

4-6

(Jun 2001) XML transformations

UNIFACE V8.2

For your convenience, the Sun Java Runtime environment is included on
your UNIFACE CD (Microsoft Windows installations only).

Note: On Microsoft Windows systems, ensure that the path to JVM.dIl is
declared in the PATHS environment variable.

Sighature

USYSXSLT provides operation XMLTRANSFORM for transforming
XML streams.

Remote execution of USYSXSLT

You can specify remote execution of the USYSXSLT component in your
assignment file. For more information, see Assignments for remote
services and reports in the UNIFACE Library.

4.6 Basic XSLT technigues—examples

The following examples show the techniques required in most common
XSLT transformations:

4.6.1 XSLT—rename elements and attributes

In many cases, elements and attributes have the same semantic meaning
in two different DTDs but are named differently. You must therefore
create an XSLT script to rename the elements and attributes of one DTD
to match the naming conventions in another DTD.

Input stream
The input stream uses the element act or and attribute r ol e:
<?xnh version="1.0" ?>

<actor rol e="i nnocent bystander">Pet er </ act or >

Output stream
The output stream requires the element per son and attribute t ype:
<?xmh version="1.0" encodi ng="UTF8"?>

XML Stream Guide (Jun 2001)

a7

UNIFACE V8.2

<per son type="i nnocent byst ander" >Pet er </ per son>

XSLT stylesheet
Renaming act or to per son, androl e tot ype, can be done with the
following XSLT stylesheet:
<?xnh version="1.0"?>
<xsl : styl esheet xnhns: xsl ="http:// v w3. or g/ 1999/ XS/ Transformi versi on="1.0">
<xsl :out put net hod="xm" />
<xsl :tenpl ate natch="/" name="root Tenpl ate" >
<xsl : appl y-tenpl at es sel ect="actor" />
</xsl :tenpl at e>
<xsl:tenpl ate natch="actor" nane="actor-to-person" >
<xsl : el enent nane="per son">
<xsl:attribute nane="type">
<xsl : val ue-of sel ect="@ol e" />
</xsl:attribute>
<xsl :val ue-of select="." />
</ xsl : el ement >
</xsl :tenpl at e>
</ xsl : styl esheet >

Literal result elements

Template act or - t 0- per son can be written in a much more compact
form, using literal result elements. Literal result elements are any non-
XSLT elements inside a template body. Literal result elements are
simply copied to the output stream by the XSLT processor.

You can also set attribute values for literal result elements, using curly
braces ({ and }) to indicate that the attribute value is not literal, but
derived. These techniques are shown in the following alternative act or -
t o- per son template:

<xsl :tenpl ate natch="actor" name="actor-to-person" >
<person type="{@ol e}" >
<xsl :val ue-of select="." />
</ per son>

</xsl :tenpl at e>

4-8

(Jun 2001) XML transformations

UNIFACE V8.2

4.6.2 XSLT—change attributes to elements

Since UNIFACE does not read data from attributes?, it is almost always
necessary to map an attribute to an element before an xm | oad, and to
map an element to an attribute after an xm save.

Input stream
The input stream has an attribute r ol e (of the element act or):
<?xmh version="1.0" ?>

<actor role="i nnocent bystander">Peter</ actor>

Ouput stream

The output stream requires elements t ype and nane (as a child of
element per son):

<?xnh versi on="1.0" encodi ng="UTF8"?>
<per son>

<nane>Pet er </ nane>

<t ype>i nnocent byst ander </ t ype>
</ per son>

XSLT stylesheet
Use the following XSLT stylesheet:

<?xnh version="1.0"?>
<xsl : styl esheet xnhns:xsl ="http://waun wB. or g/ 1999/ XS/ Tr ansf or
version="1.0">

<xsl :out put net hod="xm" />
<xsl : tenpl ate natch="/" name="root" >

<xsl : appl y-tenpl at es sel ect="actor" />
</xsl :tenpl at e>
<xsl :tenpl ate natch="actor" name="actor-to-person" >

<per son>

<nane>
<xsl :val ue-of select="." />

</ nane>

1.

With the exception of the processing information attributes—i d, crc,

st at us and val err —that UNIFACE creates to support disconnected record sets.

XML Stream Guide (Jun 2001)

4.9

UNIFACE V8.2

< ype>
<xsl : val ue-of sel ect="@ol e" />
</ type>
</ per son>
</xsl :tenpl at e>

</ xsl : styl esheet >

4.6.3 XSLT—reorder elements

In the simplest case, reordering elements means putting element B
before element A. In this example, you are restructuring the tree by
creating or removing nodes. This kind of reordering is needed when an
attribute is mapped to an element and the text node of the attribute’s
element should be mapped to a child element.

Input stream

The following XML stream stores the actor name as the content of
element <act or >:

<xnh version="1.0" ?>

<actor rol e="i nnocent bystander">Pet er </ act or >

Output stream

The output stream requires that the actor name should be contained in
an element <name>:

<?xmh version="1.0" encodi ng="UTF8"?>

<per son><nane>Pet er </ nane>

<type>i nnocent byst ander </ t ype></ per son>

XSLT stylesheet

Use the following XSLT stylesheet:

<?xnh version="1.0"?>

<xsl : styl esheet xnhns:xsl ="http://ww wB. org/ 1999/ XS/ Tr ansf or nt
version="1.0">

<xsl :out put net hod="xm" />

<xsl :tenpl ate natch="/" name="root" >

<xsl : appl y-tenpl at es sel ect="actor" />

4-10

(Jun 2001) XML transformations

UNIFACE V8.2

</xsl :tenpl at e>
<xsl :tenpl ate natch="actor" name="actor-to-person" >
<per son>
<nane>
<xsl :val ue-of select="." />
</ nane>
<type>
<xsl : val ue-of sel ect="@ol e" />
</ type>
</ per son>
</xsl :tenpl at e>
</ xsl : styl esheet >

4.6.4 XSLT—suppress empty elements or attribute

An element always overwrites the value of the field to which it is mapped
in UNIFACE. If no element is mapped to a field, the current value of the
field is preserved, even if other fields in the same occurrence are modified
by data from the stream. Therefore, it can be useful to exclude empty
elements from a stream if you want to preserve default values, or merge
subsets of records.

The simplest method is to suppress the output when the source element
or attribute is empty.

Input stream

The attributer ol e in the following XML stream should be suppressed in
the output stream when it is empty. Otherwise it should be mapped to
the element t ype.

<?xmh version="1.0" ?>

<act or s>
<actor rol e="">Peter</actor>
<actor rol e="star">Q eta</ actor>

</ act or s>

Output stream
The following output is required:

XML Stream Guide (Jun 2001) 4-11

UNIFACE V8.2

<?xnh versi on="1.0" encodi ng="UTF 8" ?>
<per sons>
<per son><nane>Pet er </ nane></ per son>
<per son><nane>Pet er </ nane><t ype>st ar </ t ype></ per son>

</ per sons>

Note: The attributer ol e has been suppressed in the first occurrence of
<per son>, while it has been mapped to elementt ype in the second
occurrence.

XSLT stylesheet
Use the following XSLT stylesheet:

<?xnh version="1.0"?>
<xsl : styl esheet xnhns:xsl ="http://wan wB. or g/ 1999/ XS/ Tr ansf or
version="1.0">
<xsl: out put net hod="xm" />
<xsl :tenpl ate natch="/" name="root" >
<per sons>
<xsl : appl y-tenpl ates sel ect="//actor" />
</ per sons>
</ xsl : tenpl at e>
<xsl :tenpl ate match="actor[@ol e=""]"
nane="supr ess- out put - when- enpt y" >
<per son>
<nane>
<xsl:val ue-of select="." />
< nane>
</ per son>
</xsl :tenpl at e>
<xsl :tenpl ate natch="actor" name="actor-to-person" >
<per son>
<nane>
<xsl:val ue-of select="." />
< nane>
<type>
<xsl :val ue-of sel ect="@ol e" />
</ type>

4-12

(Jun 2001) XML transformations

UNIFACE V8.2

</ per son>
</xsl :tenpl at e>
</ xsl : styl esheet >

4.6.5 XSLT—implement exclusive OR relationship

A DTD can specify that it expects element A or element B as a child of
another element, but not both. For example, a security implementation
only accepts an encrypted password or a codeword, but not both. This
constraint is described by the following DTD:

< BLEMBENT security (encrypt edpassword | codeword) >
< BLEMENT encrypt edpassword (#PCDATA) >
<! ELBEMENT codewor d (#PADATA) >

The XSLT stylesheet must be able to either handle the
encr ypt edpasswor d and codewor d elements differently, or transform
them to the same output item. In this example, both of these alternative
elements are transformed to the same output element.

Input stream
The following source XML stream conforms to the DTD:
<?xmh version="1.0" ?>
<security>
<encr ypt edpasswor d>4</ encr ypt edpasswor d>
</ security>

You should validate the XML stream against the DTD to confirm the
XML stream contains either a password or a codeword. Use the Proc
statement xni val i dat e for this purpose.

Output stream

The following output is required:

<?xnh versi on="1.0" encodi ng="UTF8"?>

<ENT TY. MDEL><A B.D>4</ FI ELD></ ENT TY. MTE_>

Note: This output stream can be loaded by a UNIFACE component
without the need for specifying a mapping between element and field
names, if the entity named ENTITY.MODEL is painted on the component,
and the ENTITY field list includes a field named FIELD.

XML Stream Guide (Jun 2001)

4-13

UNIFACE V8.2

XSLT stylesheet
Use the following XSLT stylesheet:
<?xnh version="1.0"?>
<xsl: styl esheet xnhns: xsl ="http://wan wB. or g/ 1999/ XS/ Tr ansf or
version="1.0">
<xsl: out put net hod="xm" />
<xsl :tenpl ate match="/" nane="root-tenpl ate" >
<ENTI TY. MIDEL>
<xsl : appl y-tenpl ates sel ect ="security/*" />
</ BENN TY. MDE>
</xsl :tenpl at e>
<xsl : tenpl at e nat ch="encr ypt edpassword | codewor d"
nane="xor -t o- H B.D BENTl TY. MDE" >
<H B.D>
<xsl:val ue-of select="." />
<A BAD
</xsl :tenpl at e>
</ xsl : styl esheet >

4.7 XSLT applied to UNIFACE—examples

The following examples show some applications of XSLT within
UNIFACE:

4.7.1 B2B XSLT stylesheets

UNIFACE uses XSLT stylesheets to transport data to and from B2B
messages. cxm nes2u. xsl converts Ariba B2B messages for processing
by UNIFACE. u2cxm mes. xsl converts UNIFACE B2B message into
Ariba format. These XSLT stylesheets are provided with your UNIFACE
installation.

These stylesheets also provide examples of the application of XSLT to
inter-component communication. This example describes some of the
techniques used in these stylesheets.

4-14

(Jun 2001) XML transformations

UNIFACE V8.2

cxmimes2u.xsl

This stylesheet removes the need to do default or local mapping of
element names to field names, by transforming the input XML stream to
a structure conforming to UNIFACE's default naming structure for
elements: <FI ELD. ENTI TY. MODEL>. For example, the following
template from cxm nmes2u. xsl converts attribute domai n to element
<AT_DOWVAI N. TCREDENTI AL. U_V8B2B>:
<xsl : tenpl ate nane="t o_donai n">
<AT_DOVN N TCREDENTI AL. U V8R2B>
<xsl : val ue-of sel ect="//Header/ To/ O edenti al / @onai n"/ >
</ AT_DOWN N TCRECENT AL. U VBR2B>
</xsl : tenpl at e>
The stylesheet uses an identity transformation template to copy sub-
trees from the input XML stream to the output stream. This template
applies to all nodes in the input stream, so if there is no other template
with a more exact match for the current node, the identity
transformation template is applied instead (the XSLT standard defines
rules for the precedence of templates, so a template matching a wildcard,
such as "*", has lower precedence than a template matching a specific
element name, such as " Fr ont').
<l-- ldentity transformation tenpl ate -->
<xsl :tenpl ate nat ch="*| @| comment ()| processi ng-i nstruction()|text()">
<xsl : copy>

<xsl : appl y-tenpl ates sel ect ="*| @| conment () | pr ocessi ng-
instruction()|text()"/>

</ xsl : copy>
</ xsl : tenpl at e>
</ xsl : transforn»

The identity transformation template is particularly useful for B2B
stylesheets, because this allows the application to convert and process
the B2B envelope, and then process the B2B body in a separate phase.

u2cxmimes.xsl

XSLT stylesheets are not ‘reversible’ so a separate stylesheet is defined
to convert the data from the format used by UNIFACE B2B to a format
suitable for Ariba. The following template transfers element values to the
attributes required by Ariba:

<!-- (onposed el enent tenplate -->

<xsl : tenpl ate nat ch="CM.. U VBB2B'>

XML Stream Guide (Jun 2001) 4-15

UNIFACE V8.2

<cXM>
<xsl:attribute nane="versi on">
<xsl : val ue-of sel ect="AT VERI QN'text()"/>
</xsl:attribute>
<xsl:attribute name="xni:Iang">
<xsl : val ue-of sel ect="AT_LANGAFH text()"/>
</xsl:attribute>

4.7.2 Transform an XML stream

This example uses an XSLT file to normalize an XML stream so that all
the information in the stream can be accessed by the xm | oad statement.
This normalization can be necessary because of the divergence between
the tree structure inherent in XML and the relational model on which
UNIFACE is based. For more information, see section 1.2.5 Document
Type Definition (DTD) .
The input XML stream | _I NPUT has the following content:
<?xmh version="1.0"?>
<teami d="df gt ydyghr67" crc="" status="new >
<i d>10001</ i &>
<nane>W| | i ans</ nane>
<driver id="1223werw 44353456456" crc="" status="new' age="35" gender="ni>
<i d>10002</ i d>
<nane>Anal </ nane>
</driver>
<car id="dyt4645yrhg567" crc="" status="new' >
<i d>10003</i d>
<nanme>Lhknown</ nane>
<manuf act ur er >For d</ nanuf act ur er >
</ car>
</t ean»

This stream contains the following information that UNIFACE cannot
load directly into components:

4-16 (Jun 2001) XML transformations

UNIFACE V8.2

= Information in attributes (such as age="35"), which UNIFACE does
not interpret.

< Thei d and nane elements occur as the children of elements t eam
driver, and car. Elements occurring as children of more than one
other element are also not supported by UNIFACE.

Finally, elementst eam dri ver and car have UNIFACE processing
information attributes that must be preserved in the output stream.

The target output XML stream, | _NORMALI ZED is the following
(transformed items are in bol d):
<?xnh version="1.0" encodi ng="utf-8" ?>
<teamcrc="" id="df gt ydyghr 67" stat us="new'>
<t eam i d>10001</t eami d>
<t eam name>WI | i ans</ t eam nane>
<driver crc="" id="1223werw 44353456456" st at us="new'>
<age>35</ age>
<gender >n¥/ gender >
<dri ver -i d>10002</ dri ver-i d>
<dri ver - name>Anal </ dri ver - name>
</driver>
<car crc="" id="dyt4645yrhg567" status="new'>
<car - i d>10003</ car-i d>
<car - name>Lhknown</ car - nane>
<nmanuf act ur er >For d</ manuf act ur er >
< car>
</tean»
The following XSLT instructions are used to achieve this transformation:
<?xnh versi on="1.0"?>

<xsl : styl esheet xnhns:xsl ="http://ww wB. org/ 1999/ XS/ Transf ornf versi on="1.0">

<l-- (opy elenents to the output stream -->
<xsl :tenpl at e natch="*" nane="nai n">

<xsl : copy>

<l-- The followng attributes are to be kept as attributes. -->
<l-- Frst they are copied to the output stream and then -->
<I-- tenplate disabl eTenpl ates is applied to the attributes -->
<l-- to prevent application of tenplate el enentsToAttributes. -->

XML Stream Guide (Jun 2001)

4-17

UNIFACE V8.2

<xsl:copy-of select="@d | @rc | @alerr | @tatus"/>

<l-- Copy el enents, rename non-unique el enents, convert attributes to
elenents. -->

<xsl : appl y-t enpl at es sel ect =' @| node()"/ >

</ xsl : copy>
</ xsl : tenpl at e>

<I-- Handl e attributes by converting themto child el enents. -->
<xsl :tenpl ate natch="@" nane="el enent sToAt tri but es">
<xsl : el enent nane="{nane()}">
<xsl :val ue-of select="."/>
</xsl : el enent >
</ xsl : tenpl at e>

<I-- Mike sel ected el enent nanes uni que by concatenati ng parent nane. -->
<I-- Mdify the 'match’ attribute to change the list of elenments -->
<l-- requiring concatenation using the XPATH //*/NewNane for each el enent. -->
<xsl :tenpl ate match="//*/nane | //*/id" name="concat enat eH enent Nanes" >
<xsl : el enent nane="{concat (nane(..), '-', nane())}">
<xsl :val ue-of select="."/>
</ xsl : el enent >

</ xsl: tenpl ate>

<l-- Dsable output of these itens, excepting output as the result of an
xsl : copy -->

<I-- or xsl:copy-of instruction. -->
<xsl:tenplate natch="@d | @rc | @alerr | @tatus" nane="di sabl eTenpl at es"/

</ xsl : styl esheet >

The following Proc can be used to effect the normalization of the input
XML stream (assuming that the XSLT instructions are contained in afile
normal i ze. xsl):

operati on XNORVALI ZE
par ans
nuneric | _STATUS adr

4-18 (Jun 2001) XML transformations

UNIFACE V8.2

string | _STATUSGONTEXT adr
string | _INPUT :IN
string |_ARGMENTS :IN
string | _NORWALI ZED :IN
endpar ans
activate "USYSXSLT'. XM.TRANSFGRM (I _INPUT, "nornal i ze. xsl ", | _NIRVALI ZED,

| _ARGIMENTS, |_STATUS, | _STATUSONTEXT)

; Hoandl e activation errors HERE, by eval uating $status and $procerror.
; Handl e errors that occured during validation HERE by

; evaluating the expressions of |_STATUS and | _STATUSCONTEXT.

end ; operati on XNORVALI ZE

Note: The XSLT instructions in this example are generic; this means the
stylesheet can be applied to any XML stream containing non-unique child
element names, or data in attribute values. However, mixed content
(where an element contains a mixture of text data and child elements) is
not handled by this transformation. To use this stylesheet on an XML
stream containing mixed content, add the elements with mixed content to
the mat ch attribute of template di sabl eTenpl at es. This excludes the
mixed content from the output XML stream.

4.7.3 Get values from an XML stream using XSLT

It is possible to use XSLT to get single values or groups of values from an
XML stream. The following XSLT instructions can be used for this:

<?xnh version="1.0"?>
<xsl : styl esheet xnhns:xsl ="http://ww wB. org/ 1999/ XS/ Transf ornf versi on="1.0">
<xsl: output nethod="text"/>

<xsl : stri p-space el enents="*"/>

<!-- O sable output of these nodes (recursive). -->
<xsl :tenpl ate natch="*" nanme="out put Not hi ng" >
<xsl : appl y-tenpl ates sel ect ="*"/>
</ xsl : tenpl at e>

<I-- Qutput the value of this node. -->

XML Stream Guide (Jun 2001)

4-19

UNIFACE V8.2

<xsl :tenpl at e nat ch="Tar get Node" nane="out put Val ued " >
<xsl : val ue-of sel ect="Target Val ue"/ >

</ xsl: tenpl ate>

</ xsl : styl esheet >

The <xsl : out put > element specifies that the output format of the
stylesheet is text, not XML. This means that XML entities are replaced
by their replacement texts, so &np; is output as & The <xsl : stri p-
space> element controls which white space nodes are removed from the
XML stream. This example removes all white space nodes.

Template out put Not hi ng recursively steps through all the elements in
the XML stream, and assigns nothing to output. This template produces
empty output.

Template out put Val ueOF matches a specific element or set of elements
specified by TargetNode, and outputs related values specified in
TargetValue. The match attribute of out put Val ueXf is more exact than
that of out put Not hi ng, so the XSLT processor applies out put Val ueC
template preferentially.
The following XML stream is processed using this stylesheet:
<?xnh version="1.0"?>
<A>
<Al>abc</ A1>
<A2>def </ A2>

<Bl>ghi </ B>
<B2>j kl </ B2>
</ B>
<C
<Cl>mo</ C1>
<Cl>pgr </ C1>
<Cl>stu</ C1>
JC
<C
<Cl att="goodbye ">wwx</Cl>
<Cl att="cruel ">yzl</Cl>
<Cl att="worl d">234</ C1>
JC
<Catt="hello " att2="worl d">

4-20 (Jun 2001) XML transformations

UNIFACE V8.2

<C1>567</ C1>
<Cl>8</ Cl>
<C1>9</ C1>
<J4C
<D<!-- comment. -->Mxed content <Dl>el enent </ DL> exanpl e. </ D>
< A

The following table shows the values output from the XML stream after
it is processed using the XSLT stylesheet.

Table 4-1 Conversion of UNIFACE data types to PCDATA in XML streams. part 1 of 2

TargetNode and TargetValue Return value
TargetNode: * abcdef ghi j kIl mopgr st uvwxyz1
TagetValue: . 23456789M xed cont ent

Return the value of all elements. el ement exanpl e.

Attribute values, comments, and

processing instructions are not

matched by TargetNode, and are

therefore not returned.

TargetNode: C1 mopgr st uvwxyz123456789
TargetValue: .

Return the values of all <C1>

elements.

TargetNode: C1[1] nmovwx567

TargetValue: .

Return the value of the first <C1>

child of any element (this matches

three <C1> elements).

TargetNode: C[2]/ C1[3] 234

TargetValue: .

Return the value of the third <C1>

child of the second <C> element.

TargetNode: D | D1 M xed content el ement
TargetValue: . exanpl e.

Return the value of mixed content

element <D> and child element
<D1>.

XML Stream Guide (Jun 2001) 4-21

UNIFACE V8.2

Table 4-1 Conversion of UNIFACE data types to PCDATA in XML streams. part 2 of 2
TargetNode and TargetValue Return value
TargetNode: C1 goodbye cruel world

TargetValue: . / @t t

Return the values of the at t
attributes of the <C1> elements.

TargetNode: ([3] hel | o
TargetValue: . /| @

Output the value of the first attribute
of the third <C> element (the
TargetValue matches all attributes of
the <C> element, but <xsl : val ue-
of > only outputs the first node that
matches TargetValue).

TargetNode: D exanpl e.
TargetValue: . / text () [2]

Output the second text node of
element <D>. TargetNode matches
all <D> elements in the stream, so a
more exact expression would be
required for TargetNode if the stream
contained more than one <D>
element.

TargetNode: D conment .
TargetValue: . / corment ()

Output the first comment child of
element <D>.

For an example of an operation wrapping this stylesheet, see
section 4.7.4 Operation GETXMLITEM.

4.7.4 Operation GETXMLITEM

This operation calls an XSLT stylesheet and returns the value of a node
in an XML stream. The parameters can specify one node or several nodes.

4-22

(Jun 2001) XML transformations

UNIFACE V8.2

GETXM.I TEMuses $r epl ace to insert parameters XNODE and XVALUE
into an XSLT stylesheet, and uses component USYSXSLT to process the
XSLT stylesheet. For more information about the XSLT stylesheet used
by this operation, and examples of input and output data, see

section 4.7.3 Get values from an XML stream using XSLT.

operati on GETXMLI TEM

; Get anitemor set of itens froman XM stream
; using XPATH patterns.

; Modify an XSLT styl esheet using the $repl ace

; function, and then activate USYSXSLT.

par ans
nuneric | _STATUS adr
string |_STATUSGONTEXT : QJT
string |_XM :IN
string XNIDE ©IN
string XVALLE :IN
string |_VALLE adr

endpar ans

vari abl es

string XSLTH LE
endvari abl es

fileload "getitemxsl", XSL.TH LE

XSLTFI LE = $repl ace(XSLTH LE, 1, "Target Node", XNIE)
XSLTH LE = $repl ace(XSLTH LE 1, "Target Val ue", XVALLE)

filedunp XSLTH LE "getitemenp. xsl"

activate "USYSXSLT'. XMLTRANSFCRV{| XM, "getitemenp.xsl", " ", | _VALLE
| _STATUS, | _STATUSGONTEXT)

end ; operation GETXM.I TEM

XML Stream Guide (Jun 2001)

4-23

UNIFACE V8.2

4.8 Validation—examples

It is often necessary to validate an XML stream before or after
transformation.

4.8.1 Validate an XML stream

You can use the Proc statement xni val i dat e to validate an XML
stream, even if the DTD for the XML stream is not in your Repository.

The following operation XVAL| DATE validates an XML stream using
xm val i dat e:

operation XVALI DATE

par ans
nuneri c | _STATUS agr
string |_STATUSCONTEXT : QJT
string |_DID : IN
string |_XWML ©IN
endpar ans

; | _DIDis afile path; use the argunent /file
; toindicate this to xnhval i date.
xnhvalidate/file | _XM, |_DID

| _STATUS = $procerror

| _STATUSCONTEXT = $pr ocer r or cont ext

end ; operati on XVALI DATE

4-24 (Jun 2001) XML transformations

Chapter 5

UNIFACE V8.2

Handling communication
between components

Components communicate via the parameters of their operations.
UNIFACE provides a range of data types for parameters, including
occurrence and entity parameters, and basic data types such as numeric
and string parameters.

UNIFACE provides XML stream parameters, which enable components
to exchange structured data and disconnected record sets using XML.
The structure of an XML stream is described by a DTD, defined in the
DTD Editor. The structure of an XML stream can be transformed using
XSLT.

UNIFACE provides Handle parameters for exchanging data between
components by reference. Handles enable components to communicate
using operations defined on their entities and occurrences.

5.1 Using the DTD Editor

The following is a description of how to create and edit DTDs using the
DTD Editor and the DTD Wizard.

XML Stream Guide (Jun 2001)

5-1

UNIFACE V8.2

5.1.1 Start the DTD Editor

Figure 5-1 Starting the DTD Editor.

e UNIFACE Seven

File Edit “iew Editors Litilities
1'5'@' il Entities...
Eields...
3 Define Application Mo [S [=] B3
Eelationships...
e DTDs..
ART . ey
HiL Froperties..
SubtyEes...
Trigeers. ..
=
Details of '4RT"
Commerts ﬂ
[
Entities... 0], Cancel |

To start the DTD Editor, do the following:

1. Start the UNIFACE Model Editor.
2. Select an application model.

5-2 (Jun 2001) Handling communication between components

UNIFACE V8.2

3. Click Go To—>DTDs. This opens the Open DTD form.

Figure 5-2 Open DTD form.

§ Open DTD =]

Hame | Description | + |5
hodel an ART t | al
oD i 4 [aT_aRT_DTO] |
Type | M ame | D escription | b odified
& BASICDTD 18-apr-00 15:13:06 -
- & BASIC_NO_ATTSDTD 14-apr-00 135213
i @ REMAMEDDTD 1d-apr-0013:42:58

Help Ok Cancel |

4. Select a DTD or enter the name of a new DTD.
5. Click OK. This opens the Define DTD form of the DTD Editor.

5.1.2 Generate a DTD from a component’s structure

To generate a DTD from a component’s painted structure of entities and
fields, do the following:

1. Start the DTD Editor.

2. Create a new DTD, or open an existing DTD.

3. Select File—>Load Component Structure.

4. Select the component from the list, and click OK.

This generates a DTD that defines an XML stream with a structure
corresponding to the field and entity structure from the component.

Generating a DTD from the component’s structure overwrites all
declarations already stored in the DTD.

XML Stream Guide (Jun 2001) 5-3

UNIFACE V8.2

DTD. Use the DTD Wizard to add other fields from your application
model.

a Note: Fields that are not painted on the component are not added to the

5.1.3 Generate DTDs from entities

To generate a DTD from entities defined in your application model, do
the following:

1.

o wnN

No

Figure 5-3 Load Fields form.

Start the DTD Editor.

Create a new DTD, or open an existing DTD.

Click Wizard. This starts the DTD Wizard.

Select the root element of the tree.

Right-click, and select Insert Entity from the pop-up menu. Select an
entity from the list.

Click OK.

Add fields to the entity by selecting Load Fields from the pop-up
menu. Select the fields you need from the list and click OK.

i Load Fields: ARTCAT ART |

3] Field Mame

ART_ID

Lakel
ART ID

v CAT D CAT_ID
(8], | Cancel |
5-4 (Jun 2001) Handling communication between components

UNIFACE V8.2

You can also insert fields individually by selecting Insert Field from
the pop-up menu. This gives you the option of entering field names
that are not defined for the entity.

8. Add attributes to the elements you have generated by selecting the
elements and selecting Select Attributes from the pop-up menu.

Figure 5-4 DTD Select Attributes form.

DTD Select Attributes =]

v Dizconnected Record Set

[+ Status

[+ “alidate

[2pply to children

0,4 Cancel

9. Compile the DTD.

This generates a DTD that defines a structure corresponding to the
entity selected in steps 5, 6, and 7.

You can also insert an entity inside another entity. Select the element
representing the outer entity, and repeat steps 5 to 8.

you are working in the DTD Wizard. To define elements for objects that

Note: You can only insert entities defined in an application model when
are not in your application model, edit the DTD in the Define DTD form.

5.1.4 Load a DTD from a file
To load a DTD from a file, do the following:

1. Start the DTD Editor.
2. Click File—>Load from file...

XML Stream Guide (Jun 2001) 5-5

UNIFACE V8.2

3. Enter the name of the DTD (including the path to the file), or browse
to the file.
4. Click Open to load the DTD file into the DTD Editor.

0 Caution: Clicking Open overwrites the current DTD definition.

5. Select File—>Save or File—>Compile DTD to store the DTD in your
Repository.

5.1.5 Define relationships in XML streams

Entities are represented as elements in XML, and inner entities are
represented as elements nested within the start and end tags of the outer
entity.

To define inner-outer entity relationships in an XML stream, do one of
the following:

= Create a component with the relationships painted using frames-
within-frames. Generate the DTD from the component structure, as
described in section 5.1.2 Generate a DTD from a component’s
structure.

= Load the inner entities using the DTD Wizard, as described in
section 5.1.3 Generate DTDs from entities.

5.1.6 Select attributes for elements
To select attributes for elements, do the following:

1. Open the DTD in the DTD Editor.
2. Click Wizard to start the DTD Wizard.
3. For each element that requires attributes, do the following:
= Select the element in the DTD Tree on the DTD Wizard form.

= Right-click on the element, and select Select Attributes from the
pop-up menu.

5-6 (Jun 2001) Handling communication between components

UNIFACE V8.2

= Select the attributes you require on the Select Attributes form.

Figure 5-5 DTD Select Attributes form.
DTD Select Attributes

v Dizconnected Record Set

v Status
W ID
v

v “alicate

[T &pply to children

I

Cancel

]|

= Click OK to accept the changes, or cancel the changes by clicking

Cancel.

5.1.7 Define a default mapping for a DTD

It can be necessary to tell UNIFACE how to map the elements in an XML
stream to fields and entities. You can do this by defining a default

mapping for the DTD or by defining a local mapping on a component. For
more information about creating a local mapping, see section 5.2.3 Define
a local mapping for a DTD.

To define a default mapping for a DTD, do the following:

XML Stream Guide (Jun 2001)

5-7

UNIFACE V8.2

1. Open the DTD in the DTD Editor.
2. Click Mapping. This opens the DTD Default Mapping form.

Figure 5-6 DTD Default Mapping form.

] DTD - Default Mapping |

DTD kem Mame
cateqory
article
article_id
category_id

cat_id

cat_code
cat_description

art_id

att_naime

att_price
att_description
art_availakbility
categories_and_articles

LIMIFACE Mame
CaT ART
ART ART
ART_ID
CAaT_ID
D

cD
DESCR
IDART ART

MR

PRICE

DESCR.ART ART

AN AL

ARTCAT ART |

[Mesay

Delete

K

Cancel

3. For each element you want to map to a UNIFACE field or entity, do

the following:

= Enter the name of the element in the DTD Item Name column.

= Enter the name of the target field or entity in the UNIFACE Name
column. It can be a good practice to use qualified names, such as
Field.Entity, and Entity.Model. If you qualify entity names with
model names, then you need to specify a local mapping if the XML
stream is also mapped to an identical entity in a different

application model.

For example, if the default mapping specifies that element
count ry is mapped to the entity COUNTRY.ORD, you need to
specify a local mapping to map the data to the entity

COUNTRY.ORD _P.

4. Click OK to accept the mapping definitions, or Cancel to discard the

changes.

5. Select File—>Save to store the changes in your Repository.

5-8

(Jun 2001) Handling communication between components

UNIFACE V8.2

Creating a default mapping in the DTD Wizard

Whenever you rename an element in the DTD Wizard, a corresponding
entry in the default mapping is created or updated.

Figure 5-7 DTD: Rename form.

DTD: Rename |
LIMIF ACE Mame o
D7D fetm Mame foat_id
Ok Cancel i

5.1.8 Define a DTD manually

To define a DTD manually, do the following:

1. An XML stream has the following structure:

RootDef

EntityDefs

FieldDefs

AttributeDefs

where:

< RootDef is the definition of the root node of the XML stream

= EntityDefs are the definitions of elements that represent
UNIFACE entities

= FieldDefs are the definitions of elements that represent the fields
of the UNIFACE entities

= AttributeDefs are the definitions of attributes for elements

The following steps describe how to define root, entity and field

elements, and attributes.

2. All XML streams have a root node, which encloses all the other
elements in the stream. The definition of the root element is always
the first definition in the DTD (see step 1). Define the root element as
follows:

<! ELEMENT RootName (OuterEntity{MultiplicityOperator}) >

XML Stream Guide (Jun 2001)

5-9

UNIFACE V8.2

where:

= RootName is the name of the root element of the entity. The root
element is not mapped to any UNIFACE object, so it is
conventional to give the root element the same name as the DTD
or to name it ROCOT.

= OuterEntity is the name of the element mapped to the outermost
UNIFACE entity in the XML stream.

= MultiplicityOperator is a single character that defines how many
times an element can occur in the stream. The available options
are:

=?—the element can occur zero or one times in the stream.
=*—the element can occur zero, once or many times in the stream.
=+—the element can occur once or many times in the stream.
<No operator—the element must occur exactly once in the stream.

Define a DTD manually-root element declaration

At this stage, your DTD should look similar to the following:
< ELEMENT ROOT (nyentity*)>
The DTD defines the root element ROOT, which has one child element
nyentity.

3. Define elements for each of the UNIFACE entities in the XML stream
(the EntityDefs in step 1). To do this, declare an element containing

elements that represent the fields and inner entities of the entity.
Define each entity as follows:

<IELEMENT EntityName ({InnerEntity, {MultiplicityOperator} |
FieldName, K, InnerEntity, {MultiplicityOperator} | FieldName,}...{,
InnerEntity,, {MultiplicityOperator} | FieldName, })>

Where:

= EntityName—is the name of the element mapped to the
UNIFACE entity.

= InnerEntity—is the name of an element mapped to an inner
entity.

= FieldName—is the name an element mapped to a field of the
UNIFACE entity.

Define a DTD manually-element declarations
At this stage, your DTD should look similar to the following:
<I ELEMENT ROOT (nyentity*)>

5-10 (Jun 2001) Handling communication between components

UNIFACE V8.2

</ELEMENT nyentity (fieldl, field2, field3, innerentity)>

<IELEMENT innerentity (fielda, fieldb, fieldc)>

The DTD defines elements for two entities, myenti ty and

i nnerentity, and declares elements for their fields.

Define elements for all the fields of the entities in your DTDs. Define
each field as follows:

<! ELEMENT FieldName (#PCDATA) >

Where FieldName is the name of an element representing a field.
FieldName must be specified in the declaration of an entity element.

Define a DTD manually-field declarations
At this stage, your DTD should look similar to the following:

<IBLBEMENT ROOT (nyentity*)>

<IEHEMENT nyentity (fieldl, field2, field3, innerentity)>

</ELEMENT innerentity (fielda, fieldb, fieldc)>

< ELEMENT fiel d1 (#PCDATA) >

<I ELEMENT fiel d2 (#PCDATA) >

< ELEMENT fiel d3 (#PCDATA) >

< BLEMENT fi el da (#PCDATA) >

< ELEMENT fiel db (#PCDATA) >

<| ELEMENT fi el dc (#PCDATA) >

The DTD defines elements for the fields of nyenti ty and

i nnerentity. Note that the only difference between field definitions
is the element name.

Define attributes for the elements you declared in steps 3 and 4.
You can use the following attribute declarations:

e <! ATTLI ST EntityElement i d CDATA #REQUI RED>

e <! ATTLI ST EntityElement cr c CDATA #REQUI RED>

e <! ATTLI ST EntityElement st at us CDATA #REQUI RED>

e <! ATTLI ST EntityElement val err CDATA #| MPLI ED>

e <! ATTLI ST FieldElement val err CDATA #| MPLI ED>

e <! ATTLI ST ElementName AttributeName "AttributeValue"
#F| XED>

Where:

= EntityElement is the name of an element mapped to a UNIFACE
entity

XML Stream Guide (Jun 2001)

5-11

UNIFACE V8.2

= FieldElement is the name of an element mapped to a UNIFACE
field

< ElementName is either an EntityElement or FieldElement

= AttributeName is the name of the attribute

= AttributeValue is the value of the attribute

Define a DTD manually—attribute declarations
At this stage, your DTD should look similar to the following (all
attributes have been declared):
<IBLBEMENT ROOT (nyentity*)>
<I/EHEMENT nyentity (fieldl, field2, field3, innerentity)>
</ELEMENT innerentity (fielda, fieldb, fieldc)>
<I BLEMENT fiel d1 (#PCDATA) >
< ELEMENT fiel d2 (#PCDATA) >
< ELEMENT fiel d3 (#PCDATA) >
< BLEMENT fi el da (#PCDATA) >
< ELEMENT fieldb (#PCDATA) >
<IBLEMENT fieldc (#PCDATA) >

<I ATTLI ST nyentity id CDATA #REQU RED>>
<! ATTLI ST innerentity id (ATA #REQU RED>
<l ATTLI ST nyentity cre (ATA #REQU RED>
<I ATTLI ST i nnerentity cre ATA #REQJ RED>
<! ATTLI ST nyentity status (DATA #REQU RED>
<I ATTLI ST i nnerentity status (DATA #REQU RED>
<! ATTLI ST nyentity val err CDATA # MPLI ED>
<! ATTLI ST i nnerentity val err CDATA # MPLI ED>
<I ATTLI ST fieldl val err CDATA # MPLI ED>
<l ATTLI ST field2 val err (DATA # MPLI ED>
<I ATTLI ST field3 val err CDATA # MPLI ED>
<! ATTLI ST fielda val err (DATA # MPLI ED>
<I ATTLI ST fieldb val err CDATA # MPLI ED>
<I ATTLI ST fieldc val err CDATA # MPLI ED>

This DTD uses the processing information attributes required by
UNIFACE for disconnected record sets. For more information, see
section 1.2.4 Attributes in XML streams and section 1.1.6
Disconnected record sets. For an example of a DTD that uses user-
defined attributes, see section 3.4.2 Sample DTD and XML stream.

5-12 (Jun 2001) Handling communication between components

UNIFACE V8.2

6. Define a default mapping between elements defined in the DTD and
UNIFACE fields and entities.

7. Validate the DTD by selecting File—>Validate.
8. Save the DTD by selecting File—>Save, or File—>Compile DTD.

5.1.9 Define additional DTD properties

To go to the DTD Properties form, click Properties on the Define DTD
form. This opens the Define DTD Properties form.

Figure 5-8 Define DTD Properties form.

H Define DTD Properties: CAT_ART_DTD. ART

Madel Mame [2RT |
DTD Mame caT_aRT_DTD |
Description |Catemary and article DTD

File Mame fmyCatalog.dtd

External Reference
|Hl'tp:IMWW.a::me.cnm.fmyCatalng.dtd
Camment

Thiz DTD defines an XML stream for an article & category u:ubjeu:tl

Magpping 034 Cancel

The following properties can be defined on the Define DTD Properties
form:

= Description—is a short description of the DTD and its purpose.

= File Name—is the name of the DTD file created during compilation of
the DTD.

XML Stream Guide (Jun 2001) 5-13

UNIFACE V8.2

= External Reference—is a URI reference to the DTD, suchashttp://
www. acnedt ds. com nmydt d. This URI is placed in the XML stream
by the Proc statement xm save/ r ef . A 3GL component receiving an
XML stream can use this reference to locate the DTD.

= Comment—is additional information about the DTD.

= Default Mapping—is the default mapping between elements defined
in the DTD and fields and entities on a UNIFACE component.

External Reference and File Name are properties that support 3GL
components, by providing alternative ways of supplying the DTD to a
component. These properties are not required, and are ignored by
UNIFACE components.

5.1.10 Compile a DTD
To compile a DTD, do the following:

1. Open the DTD in the DTD Editor, as described in section 5.1.1 Start
the DTD Editor.

2. Select File—>Compile DTD.

Alternatively, use the command line switch / dt d to compile your DTDs.
For more information, see /dtd in the UNIFACE Library.

5.2 Handling XML streams

The XML stream parameter type allows you to send disconnected record
sets between components. The structure of an XML stream is defined by
the rules specified in a DTD.

5.2.1 Load a DTD from a file
To load a DTD from a file, do the following:

1. Start the DTD Editor.
2. Click File—>Load from file...

5-14 (Jun 2001) Handling communication between components

5.2.2 Select attributes for elements

UNIFACE V8.2

3. Enter the name of the DTD (including the path to the file), or browse

to the file.

4. Click Open to load the DTD file into the DTD Editor.

Caution: Clicking Open overwrites the current DTD definition.

5. Select File—>Save or File—>Compile DTD to store the DTD in your

Repository.

To select attributes for elements, do the following:

1. Open the DTD in the DTD Editor.
2. Click Wizard to start the DTD Wizard.
3. For each element that requires attributes, do the following:

« Select the element in the DTD Tree on the DTD Wizard form
= Right-click on the element, and select Select Attributes from the

pop-up menu

= Select the attributes you require on the Select Attributes form.

Figure 5-9 DTD Select Attributes form.

DTD Select Attributes

v Dizconnected Record Set

v “alicate

[T &pply to children

I

Cancel

]|

= Click OK to accept the changes, or cancel the changes by clicking

Cancel.

XML Stream Guide (Jun 2001)

5-15

UNIFACE V8.2

5.2.3 Define a local mapping for a DTD

To define a local mapping for an XML stream, do the following:

1.

2.

Define a local or component variable to contain the mapping
information.

DTD mapping lists are UNIFACE associative lists. Each list item has
the following syntax:

"ElementName=TargetName;..."

Where:

= ElementName—is the name of an element in the DTD.
ElementName is case-sensitive.

= TargetName—is the name of a field or entity. The fields or entities
do not have to be present on the target component. Values that
cannot be mapped to a painted field are ignored. TargetName is
not case-sensitive.

5.2.4 Create and send an XML stream

To create an XML stream, do the following:

1. Place the data destined for the XML stream into component fields.

This can involve retrieving the data from a database, or creating and
modifying field values by Proc.

Define a variable or parameter to contain the XML stream. For more
information on the syntax for defining xmi st r eamvariables and
parameters, see variables and params in the UNIFACE Library.
Save the data into the xnl st r eamvariable or parameter using the
xm save statement. The xnml save statement uses switches and
arguments to manipulate the construction of the XML stream. For
more information, see chapter 6 Proc statements and functions.

The xnl save statement creates the structure of the XML stream
according to the rules specified in a DTD. For more information about
defining a DTD, see section 5.1 Using the DTD Editor.

4. Send the XML stream as an OQUT parameter.

5.2.5 Receive an XML stream

To receive an XML stream, do the following:

5-16

(Jun 2001) Handling communication between components

UNIFACE V8.2

1. Define an operation with an XML stream as an | N parameter. For
more information on the syntax for defining xni st r eamparameters,
see params in the UNIFACE Library.

2. Load the data from the XML streams into the component’s data
structure using the xm | oad Proc statement. The xmi | oad
statement uses switches and arguments to control the transfer of data
from the XML stream to the component. For more information, see
chapter 6 Proc statements and functions.

3. After the xm | oad statement has executed, the data in the XML
stream is available for processing.

XML Stream Guide (Jun 2001) 5-17

UNIFACE V8.2

5.2.6 Reconnect data from an XML stream

You can send data from a component as a disconnected record set. To do
this, send the data as an XML stream using thei d, cr ¢, and st at us
attributes. These attributes allow the data to be reconnected to
component and database data. For more information, see section 1.1.6
Disconnected record sets, and section 1.2.4 Attributes in XML streams.

To reconnect data from an XML stream to component and database data,
do the following:

1. Load the data from the XML stream using xni | oad.

2. Useretrieve/reconnect to reconnect the data from the XML
stream to existing data in the component and in the database (if the
data has been loaded into database entities). For more information,
see chapter 6 Proc statements and functions.

5.2.7 Do remote validation

You can use XML streams to pass data to another component for
validation. This process is known as remote validation. The benefit of
remote validation is that validation logic can be centralized and located
in dedicated validation components.

To do remote validation, do the following:

1. Send the data as an XML stream to the validation component. The
XML stream must include thei d, crc, status and val err
attributes for all occurrences and fields in the stream.

2. Load the data from the XML stream into the validation component,
and reconnect the data to component and database data, using
retrieve/reconnect.

3. Validate the data. If necessary, modify the On Error triggers to set
values for the er r or nsg property of $occproperti es and
$fi el dproperti es. For more information, see $fieldproperties and
$occproperties in the UNIFACE Library.

4. Send the data back to the initial component as an XML stream using
thei d, crc, status, and val err attributes. Values for err or nsg
are placed in the val er r attribute by the xm save statement.

5. Load the data from the XML stream into the initial component. Each
val err attribute encountered by xmi | oad fires an occurrence-level
or field-level On Error trigger, with $st at us = 142.

5-18

(Jun 2001) Handling communication between components

UNIFACE V8.2

5.2.8 Make DTDs available to non-UNIFACE components

UNIFACE components always read DTD data from the URR file. As 3GL
components cannot access the URR file, UNIFACE provides alternate
means to pass DTD information to non-UNIFACE components.

To make a DTD available to non-UNIFACE components, do one of the
following:

= Open the DTD in the DTD Editor, click Properties, and enter a file
name for the DTD in the File Name field. This saves the DTD to disk
as a text file, which can be accessed by 3GL.

= Open the DTD in the DTD Editor, click Properties, and enter a
location for the DTD in the External Reference property field. The
Proc statement xmi save/ r ef can then be used to create an XML
stream that includes a reference to this location. The External
Reference must be in a format supported by the 3GL.

= xml save/ dt d can be used to include the DTD in the XML stream,
ensuring that it is available to 3GL components.

components. Additional DTD properties, such as the default mapping
between UNIFACE entities and fields and the DTD, are not provided to
non-UNIFACE components.

a Note: Only the DTD declarations are made available to non-UNIFACE

XML Stream Guide (Jun 2001) 5-19

UNIFACE V8.2

5.3 Develop and test XSLT stylesheets

The XSLT Workbench provides an environment for developing and
testing XSLT stylesheets.

Figure 5-10 Buttons on the XSLT Workbench.
4 %5LT Workbench

B]
i HawzarT] | N
IMI s) | Clear [esulls| | Sawve rESUItSl
Save WoLT

1. Select Utilities—>Edit XSLT to start the XSLT Workbench.

2. Click Open XSLT to open an XSLT file (with, by default, an . xsl file
name extension), or create a new XSLT file by entering the XSLT
instructions in the XSLT File pane of the Workbench.

3. Totestthe XSLT file, you can click Load XML to load an existing test
XML file (with, by default, an . xm file name extension), or you can
enter XML directly in the Source XML pane. You can validate the
source XML stream by selecting a DTD file in the Validation File
field, and clicking Validate.

Click Test XSLT to test the XSLT file using the Source XML file as
the input XML stream. The output XML stream is displayed in the
Result XML pane. You can save the result stream to a file by clicking
Save Results. You can validate the result XML stream by selecting a
DTD file in the Validation File field, and clicking Validate.

5-20 (Jun 2001) Handling communication between components

UNIFACE V8.2

Chapter 6 Proc statements and functions

This section describes the Proc statements and functions that you can
use to handle XML stream parameters.

XML Stream Guide (Jun 2001) 6-1

UNIFACE V8.2

6-2

(Jun 2001) Proc statements and functions

UNIFACE V8.2

Name

Synopsis

Use

Description

$occcerc

$occcrc
Set or return the CRC checksum of an occurrence.

$occcr c(EntityName)
$occcr c(EntityName) = CheckSum
Where:

= EntityName is an entity name
= CheckSum is an eight-character hexadecimal string

Allowed in all component types.

$occcr ¢ returns an eight-character hexadecimal string that represents
the current values of an occurrence’s fields. If the occurrence’s field
values change, the CRC checksum calculation yields a different result.

XML streams

CRC checksum values are required for disconnected record sets, and are
produced automatically by UNIFACE when loading data from a
database, or when creating or loading data from XML streams.

CRC checksums are stored in the cr ¢ processing information attribute
in XML streams, if the cr ¢ attribute is specified in the DTD used by the
XML stream. They are usedbyretri eve/ reconnect todetermineifan
occurrence can be updated by an XML stream. retri eve/ reconnect
does not update an occurrence with data from an XML stream unless the
CRC value in the stream matches the value of $occcr c for the
occurrence.

Disabling CRC checks during retrieve/reconnect

If you set the value of $occcr ¢ for an occurrence to 00000000,
retrieve/ reconnect does not carry out a CRC check before merging
data from the XML stream into the occurrence.

XML Stream Guide (Jun 2001)

6-3

$occcrc

UNIFACE V8.2

$occcr ¢ returns an eight-character string with hexadecimal display
format. $occcr ¢ can be set by $occcr ¢, and by xm | oad (which sets

$occcr ¢ to equal the value of the cr ¢ attribute for the occurrence in the
XML stream).

If the CRC value has not been set by $occcr c or by xml | oad, $occcrc
returns one of the following:

= The CRC checksum as calculated by the database driver—for
database occurrences only

= An empty string—for non-database occurrences

If Socccr ¢ is not equal to an eight-character hexadecimal string,
$procerror is set to the error constant <UPROCERR_RANGE>.

6-4

(Jun 2001) Proc statements and functions

UNIFACE V8.2 $occproperties

Name $occproperties
Return or set the properties of an occurrence.

Synopsis $occpr operti es(EntityName)
$occproperti es(EntityName) = PropertyList

Use Allowed in all component types.

Description $occproperti es returns or sets the properties of an occurrence using
an associative list.

PropertyList contains a UNIFACE associative list of Key=Property pairs.

The following keys are used:

= errormsg—occurrence-level validation error messages.
This can contain default UNIFACE validation error messages, or it
can contain user-defined error messages.

« subcl ass—a style subclass used by a UNIFACE Server Page to
present validation errors.

XML Stream Guide (Jun 2001) 6-5

$occproperties UNIFACE V8.2

6-6 (Jun 2001) Proc statements and functions

UNIFACE V8.2

Name

Synopsis

Use

Description

$occstatus

$occst at us
Return or set the reconnect status of an occurrence.

$occst at us(EntityName)
$occst at us(EntityName) = ReconnectStatus
Where:

= EntityName is the name of an entity

= ReconnectStatus is the status of the occurrence for reconnection to
existing data by theretri eve/ reconnect statement.

Allowed in all component types.

Each occurrence in a component is either a new occurrence not yet stored
in a database, an existing occurrence from a database, or is marked for
deletion. The $occst at us function allows you to get or set this status for
each occurrence in the component, if the value of $occst at us has
previously been set for the occurrence by $occst at us or xni | oad.

The value of $occst at us is used to set the value of the st at us attribute
in XML streams.

$occst at us returns one of the following values:

- —$occst at us has not been set to a value for the occurrence. This
can mean one of the following:

e Thereis no st at us attribute in the XML stream; xm | oad could
not set a value for $occst at us when it created the occurrence.

= The occurrence was not created by xmi | oad, and has not had
$occst at us set in Proc.

< 3$occst at us has been set to

in Proc.

e "est" —the occurrence exists in the database

= "new'—the occurrence is new, that is, it does not exist in the
database, or the occurrence originates from a non-database entity

e "del "—the occurrence is marked for deletion

XML Stream Guide (Jun 2001)

6-7

$occstatus UNIFACE V8.2

6-8 (Jun 2001) Proc statements and functions

UNIFACE V8.2

Name

Synopsis

Use

Description

retrieve/reconnect

retri evel/ reconnect

Reconnect data loaded from an XML stream with the occurrences in a
database or component.

retrieve/ reconnect {EntityName}

Where EntityName is the name of an entity painted on the component.
EntityName can be a literal string, variable, or constant.

Allowed in all component types.

retrievel/ reconnect resolves the occurrence state information stored
in the processing information attributes of the XML stream, and fires all
validate triggers. The procedure followed for each occurrence depends on
the value of the st at us attribute for each occurrence in the XML stream.

status="new"

The XML stream declares that the occurrence does not exist in the
database, or that the occurrence originates from a non-database entity,
with st at us="new'. To reconnect the disconnected record, UNIFACE
creates a new occurrence to contain the data in the disconnected record.

UNIFACE does the following for all disconnected records with
stat us="new":

1. A new occurrence is created.

2. The fields of the disconnected occurrence are merged with the
occurrence created in step 1.

3. The disconnected record is deleted, and theretri eve/ r econnect
process continues with the next disconnected record.The process does
not stop after a validation error or CRC mismatch.

Afterretrievel/ reconnect has executed, it is possible that two
occurrences with equal primary keys exist. This situation is handled by
the default Proc in the validate triggers.

XML Stream Guide (Jun 2001)

6-9

retrieve/reconnect UNIFACE V8.2

status="est"

The XML stream declares that the occurrence exists in the database with
st at us="est". To reconnect the disconnected record, UNIFACE must
find the occurrence matching the disconnected record, and update it with
the data in the disconnected record.

UNIFACE does the following for all disconnected records with
status="est":

1.
2.

UNIFACE searches for the occurrence in the component.

If the occurrence does not exist in the component, UNIFACE attempts
to retrieve the occurrence from the database (if the component has a
database connection).

If the occurrence is still not found, a new occurrence is created. The
On Error trigger ($error =2013) is fired, and theretri eve/
reconnect process continues at step 5.

If the occurrence is located in step 1 or 2, UNIFACE compares the
CRC value of the disconnected record with the CRC value for the
occurrence, and does one of the following:

= |f the CRC values match, UNIFACE can update the occurrence
with the values in the XML stream. The process continues at step
5.

= |If the CRC values do not match, the occurrence has been modified
after the XML stream was created. The disconnected record
cannot be reconnected, and the On Error trigger ($er r or =2012)
is fired for the occurrence. The process continues at step 7.

The fields of the disconnected record are merged with the occurrence
found in steps 1, 2 or 3.

If cautious locking is used, the occurrence is locked.

The disconnected record is deleted, and theret ri eve/ r econnect
process continues with the next disconnected record. The process does
not stop after a validation error or CRC mismatch.

Note: Data is not merged for up entities with empty WRITE_UP and
DELETE_UP triggers.

The reconnection can fail (for example, if an attempt is made to update a
primary key field), and the On Error trigger will fire on the original
occurrence.

6-10

(Jun 2001) Proc statements and functions

UNIFACE V8.2

retrieve/reconnect

status="del"

st at us="del " declares that the disconnected record should be deleted
from the database and/or the component. To reconnect the disconnected
record, UNIFACE must find the occurrence matching the disconnected
record, and delete it.

UNIFACE does the following for all disconnected records with
status="del ":

1. UNIFACE searches for the occurrence in the component.

2. Ifthe occurrence does not exist in the component, UNIFACE attempts
to retrieve the occurrence from the database.

3. If the occurrence is still not found, a new occurrence is created. The
On Error trigger ($error =2013)is fired, and theretri eve/
reconnect process continues at step 5.

4. If the occurrence is located in steps 1 or 2, UNIFACE compares the
CRC value of the disconnected record with the CRC value for the
occurrence:

= If the CRC values match, UNIFACE marks the occurrence as
deleted. (The occurrence is only deleted when the component
stores its data.) If cautious locking is used, the occurrence is
locked.

< [Ifthe CRC values do not match, the disconnected record cannot be
reconnected, and the On Error trigger ($err or =2012) is fired for
the occurrence. The occurrence is not marked for deletion.

5. The disconnected record is deleted, and theretri eve/ r econnect
process continues with the next disconnected record. The process does
not stop after a validation error or CRC mismatch.

No status attribute

If no st at us attribute is defined in the XML stream, then all occurrences
are treated as new (that is, all occurrences are regarded as having
st at us="new").

Fields not in the XML stream

An XML stream can include elements for a subset of the fields of an
entity. During reconnection, field values are modified if the field is
represented by an element in the XML stream (and if the record has
st atus="est"). If the field is present in the XML stream as an empty
element, the field is emptied duringretri eve/ reconnect .

XML Stream Guide (Jun 2001)

6-11

retrieve/reconnect UNIFACE V8.2

If the field is not represented by an element in the XML stream, the field
is not modified.

Caution: Included entities are an exception. The fields of included entities
are emptied if the field is not represented by an element within the stream.
All the fields of the included entity must be included in the XML stream,
otherwise data is lost during reconnection.

retrieve/reconnect and nondisconnected occurrences

retrievel/ reconnect processes disconnect occurrences (occurrences
loaded into a component with the xnl | oad statement). Other
occurrences in the component are not affected.

The values returned in $st at us following retri eve/ reconnect are:

= 0, if the occurrence was successfully reconnected.

e >0, the numberoferrorsretri eve/ reconnect encountered. In this
context, an error is defined as the number of times an On Error
trigger returned a negative value.

Receiving an XML stream

The following code shows an operation that receives an XML stream, and
loads the data from the XML into the component’s data structure.

operation XMLIN
; This operation receives and
; reconnects an XML stream

par ans
xnhstream [DTD ABCDID ABJ MYSTREAM @ IN

endpar ans

cl ear xni | oad MYSTREAV) " DID. ABCDID. ABC'
retri eve/ reconnect

6-12

(Jun 2001) Proc statements and functions

UNIFACE V8.2 xmlload

Name xm | oad

Load data from an XML stream into occurrences painted on the
component.

Synopsis xm | oad{/ i ncl def map}{/ nopr of i | e} XMLvariable, DTDname(,
DTDmapping}

Where:

« /incl def map—instructs xmi | oad to use the default DTD mapping
defined in the DTD Editor.
/ nopr of i | e—escape sequences for profile characters and subfield
separators are not converted to the corresponding profile character of
subfield separator during xm | oad.

< XMLvariable is the field, variable, or parameter containing the XML
stream.

= DTDname is the DTD used to validate the XML stream.
DTDname is a literal string, variable, or constant using the following
format:
{DTD: }Name. Model
Where:

= DITD: —specifies that the XML stream is defined using a DTD (this
is to ensure compatibility with future developments in the XML
standard).

< Name is the name of the DTD as specified in the application
model.

= Model is the name of the DTD's application model.

< DTDmapping is a UNIFACE list mapping elements to field names.

For more information on default and component mapping for XML
streams, see section 1.4.6 Default DTD mapping and mapping
defined on a component.

Use Allowed in all component types.

XML Stream Guide (Jun 2001) 6-13

xmlload

Description

UNIFACE V8.2

xm | oad transfers data from an XML stream into a component. The data
is loaded directly into the component’s data structure. xm | oad does not
interpretor initiate validation of data, so the data loaded by xim | oad can
include duplicates of occurrences already within the component, as well
as occurrences marked for deletion.

Note: Occurrences marked for deletion are not accessible in Proc and are
not displayed on forms. When data is stored to a database, occurrences
marked for deletion in the component’s data structure are deleted from the
database. For more information, see store in the UNIFACE Library.

Note: To remove duplicates of occurrences and validate data from an XML
stream, useretri eve/ reconnect .

For more information on the conversion of data between UNIFACE and
XML streams, see Section 1.4 UNIFACE processing of XML streams. For
more information about how data, profile characters, and subfield
separators are converted by the xnl | oad and xmi save statements, see
section 1.2 XML streams.

Mapping data between elements and fields and entities

The structure of the XML stream is defined by the DTD specified in
DTDName.

UNIFACE maps field values to XML elements in the stream using a
combination of the following mapping methods:

= Local mapping, contained in DTDMapping (highest priority). This is
a mapping structure defined in Proc, as an associative list of element
names and UNIFACE field and entity names. For more information,
see section 1.4.7 DTD mapping lists.

= Default mapping (defined in the application model for each DTD). The
default mapping is only used if the / i ncl def map switch is used.

= Element and field/entity name matching (lowest priority). For
example, UNIFACE maps data from fields to elements with the same
name.

These mapping techniques work in parallel, with local mapping
overriding all other mappings for a given element or field, and name
matching only being applied to those elements for which no other
mapping is defined.

The values returned in $st at us following xnl | oad are:

e -1,if xm | oad could not load the XML stream (see $pr ocerror for
more information).

6-14

(Jun 2001) Proc statements and functions

UNIFACE V8.2

xmlload

e 0, ifxm | oad loaded the XML stream successfully.

= >0,ifxnl | oad loaded the XML stream, but could not find all the field
and entity names specified in the default and local mappings. For
each field specified in the mapping but not found in the component,
$st at us is incremented by 1. More information is available in the
message frame if the assignment setting $TESTMODE_COVPONENTS is
set.

Table 6-1 Values commonly returned by $procerror for xmlload.

Value Error constant Meaning

-1500 <UXMLERR_DTD_NOTFOUND> A DTD could not be located.

-1501 <UXMLERR_DTD_INVALID> There is a syntax error in the DTD.

-1502 <UXMLERR_GENERATION> An error occurred during generation of an
XML stream.

-1503 <UXMLERR_PARSE> An error occurred during parsing of an XML
stream.

Creating and sending an XML stream

The following operation creates an XML stream from a component’s data
structure, and sends the XML stream as an OUT parameter.

operati on XM.QJT
; This operation saves data to XM..

par ans
xnhstream [DTD ABCDTD ABJ MYSTREAM . QJT

endpar ans

cl ear
retrieve
xnh save MYSTREAM " DID ABCDID. ABC'

Receiving an XML stream

The following code shows an operation that receives an XML stream, and
loads the data from the XML into the component’s data structure.

operati on XM.IN

; This operation receives and

XML Stream Guide (Jun 2001)

6-15

xmlload UNIFACE V8.2

; reconnects an XM. stream

par ans
xnhstream [DTD ABCDID ABJ MYSTREAM @ IN

endpar ans

cl earxnt | oad MYSTREAV " DID: ABCDID: ABC'

retri evel reconnect

6-16 (Jun 2001) Proc statements and functions

UNIFACE V8.2 Xmlsave
Name xm save
Place component data in an XML stream.
Synopsis xm save{/ modH{/ one}{/ dtd | / ref {/ i ncl def map}{/ r oot }
XMLvariable, DTDname{, DTDmapping}
Where:

/ mod—includes only modified occurrences in the XML stream

/ one—includes only current outer occurrence (with all inner
occurrences) in the XML stream

/ dt d—includes the DTD in the XML stream

/ r ef —includes the URI location of the DTD in the XML stream

/i ncl def map—instructs xm save to use the default DTD mapping

defined in the DTD Editor

/ r oot —excludes the XML version declaration from the saved output
XMLvariable is the field, variable, or parameter for the XML stream
DTDname—is the DTD used for the XML stream

DTDname is a literal string, variable, or constant using the following

format:

{DTD: }Name. Model

Where:

= DTD: —specifies that the XML stream is defined using a DTD (this
is to ensure compatibility with future developments in the XML
standard).

= Name is the name of the DTD as specified in the application
model.

= Model is the name of the DTD'’s application model.

DTDmapping is a UNIFACE list mapping XML elements to
UNIFACE fields and entities

Use Allowed in all component types.

XML Stream Guide (Jun 2001)

6-17

Xmlsave

Description

UNIFACE V8.2

xm save creates an XML stream from the data in a component. The
stream is built from the complete hitlist, including occurrences currently
marked for deletion. Occurrences and fields are selected from the data
based on the mapping and switches used by the xnml save statement.

For more information on data conversion between UNIFACE and XML
streams, see section 1.4 UNIFACE processing of XML streams.

Mapping data between elements and fields and entities.

The structure of the XML stream is defined by the DTD specified in
DTDname.

UNIFACE maps field values to XML elements in the stream using a
combination of the following mapping methods:

= Local mapping, contained in DTDmapping (highest priority). This is
a mapping structure defined in Proc, as an associative list of element
names and UNIFACE field and entity names. For more information,
see section 1.4.7 DTD mapping lists.

= Default mapping (defined in the application model for each DTD). The
default mapping is only used if the /i ncl def map switch is used.

=« Element and field/entity name matching (lowest priority). For
example, UNIFACE maps data from fields to elements with the same
name.

These mapping techniques work in parallel, with local mapping
overriding all other mappings for a given element or field, and name
matching only being applied to those elements for which no other
mapping is defined.

UNIFACE uses the following naming convention to generate element
names in XML streams if no mapping information is specified by Proc
statement xmi save.

Table 6-2 Default generation of element names in XML streams.

Rule UNIFACE item XML stream item Example element
Entity Entity Entity.Model <UCDTYP. DI CT>
Field! Field Field <UDESCR>

Non-unique field! Non-unique field Field.Entity.Model = <UDESCR. UFORM DI CT>

Table notes:

1. UNIFACE applies the non-unique field naming rule when two or more entities in the same DTD have fields with identical names.
In these cases, the first field added to the stream is generated using the field rule, subsequent fields using the same name in other
entities are generated using the non-unique field rule.

6-18

(Jun 2001) Proc statements and functions

UNIFACE V8.2 Xmlsave

The values returned in $st at us following xnl save are:

e -1,ifxm save could not create the XML stream (see $pr ocerr or for
more information).

« 0, if xm save created the XML stream successfully.

= >0, if xm save created the XML stream, but could not find all the
field and entity names specified in the default and local mappings.
For each field specified in the mapping but not found in the
component, $st at us is incremented by 1. More information is
available in the message frame if the assignment setting
$TESTMODE_COMPONENTS is set.

Table 6-3 Values commonly returned by $procerror for xmlsave.

Value Error constant Meaning

-1500 <UXMLERR_DTD_NOTFOUND> A DTD could not be located.

-1501 <UXMLERR_DTD_INVALID> There is a syntax error in the DTD.

-1502 <UXMLERR_GENERATION> An error occurred during generation of an
XML stream.

-1503 <UXMLERR_PARSE> An error occurred during parsing of an XML
stream.

Creating and sending an XML stream

The following operation creates an XML stream from a component’s data
structure, and sends the XML stream as an OUT parameter.

operati on XM.QUT
; This operation saves data to XM..

par ans
xnhstream [DTD ABCDID ABJ MYSTREAM . QJT

endpar ans

cl ear
retrieve
xnh save MYSTREAM " DID ABCDID. ABC'

XML Stream Guide (Jun 2001) 6-19

Xmlsave

UNIFACE V8.2

Receiving an XML stream

The following code shows an operation that receives an XML stream, and
loads the data from the XML into the component’s data structure.

operati on XM.IN
; This operation receives and

; reconnects an XML stream

par ans
xnhstream [DTD ABADTD ABQ MYSTREAM : N

endpar ans

cl ear xni | oad MYSTREAV) " DID. ABCDID. ABC'
retri eve/ reconnect

6-20

(Jun 2001) Proc statements and functions

UNIFACE V8.2 xmlvalidate

Name xm val i dat e
Validate an XML stream.

Synopsis xm val i date{/fil e} XMLStream{, ValidationData}
where:

e /fil e—instructsxm val i dat e to treat ValidationData as a system
path to a DTD file.

< XMLStream—is the field, variable, or parameter containing the XML
stream.

= ValidationData—is the field, variable, or parameter containing the
validation rules to be applied to XMLStream. ValidationData can
refer to a Repository object, to a file, or can contain the validation
rules itself. xii val i dat e applies the following rules to distinguish
these situations:

= ValidationData is treated as a system path if the argument/fil e
is used.

= If ValidationData uses DTD syntax, xmil val i dat e treats
ValidationData as a DTD.

e Otherwise, ValidationData is treated as the name of a DTD stored
in the Repository.

Where ValidationData specified a DTD stored in the Repository, use the
following format:

{DTD: }Name.Model

where:

= DTD: —specifies that the XML stream is defined using a DTD (this is
to ensure compatibility with future developments in the XML

standard).
< Name—is the name of the DTD as specified in the business object
model.

= Model—is the name of the DTD's business object model.

Use All component types.

XML Stream Guide (Jun 2001) 6-21

xmlvalidate

Description

UNIFACE V8.2

Validation objects (files, variables and so on) must follow the W3C
Recommendations for DTDs. Furthermore, DTD objects should not
contain the following items:

= an XML declaration (for example, <?xm ver si on="1. 0" ?>)

= an enclosing DOCTYPE declaration (in fact, DTDs that include a
DOCTYPE declaration do not conform to the XML 1.0
Recommendation.)

When ValidationData is omitted, UNIFACE reads the DTD declarations
embedded in the XMLStream. If no declarations are embedded in
XMLStream, then the parser reports a validation error.

If XMLStream contains embedded element and attribute declarations
and you also specify ValidationData, the XML parser receives multiple
declarations for items in the stream. The XML parser reports a
validation error in this situation.

The following values are commonly returned in $pr ocerror:
= 0O—successful

e -1—<UGENERR_ERROR>. An error occurred.

e -1406—<UPRCCERR_MEMORY>. Memory allocation failure.

e -1504—<UXMLERR _VALI DATE>. An error occurred during validation
of an XML stream.

Note: Additional information is provided in$pr ocer r or cont ext , such
as error messages from the XML parser.

Validate an XML stream

You can use the Proc statement xni val i dat e to validate an XML
stream, even if the DTD for the XML stream is not in your Repository.

The following operation XVAL| DATE validates an XML stream using
xm val i dat e:

operati on XVALI DATE

par ans
nuneri c | _STATUS agr
string |_STATUSONTEXT : QJT
string |_DID : IN
string |_XWML ©IN
endpar ans

; |_DIDis afile path; use the argunent /file

6-22

(Jun 2001) Proc statements and functions

UNIFACE V8.2 xmlvalidate

; toindicate this to xmvalidate.
xnhvalidate/file | _XM, |_DID

| _STATUS = $procerror

| _STATUSCONTEXT = $pr ocer r or cont ext

end ; operati on XVALI DATE

XML Stream Guide (Jun 2001) 6-23

	Title
	Contents
	Preface
	1 Three-tier development
	1.1 Three-tier architecture
	1.1.1 Advantages of the three-tier software architecture
	1.1.2 Requirements of three-tier development
	1.1.3 Presentation tier
	1.1.4 Business logic tier
	1.1.5 Data access tier
	1.1.6 Disconnected record sets

	1.2 XML streams
	1.2.1 Loosely coupled connections
	1.2.2 XML stream
	1.2.3 Processing information
	1.2.4 Attributes in XML streams
	1.2.5 Document Type Definition (DTD)

	1.3 DTD Editor
	1.3.1 DTD Editor
	1.3.2 DTD Wizard

	1.4 UNIFACE processing of XML streams
	1.4.1 Saving data into an XML stream
	1.4.2 Loading data from XML streams
	1.4.3 Null values in XML streams
	1.4.4 Included entities and XML streams
	1.4.5 Application of DTDs to an XML stream
	1.4.6 Default DTD mapping and mapping defined on a component
	1.4.7 DTD mapping lists

	2 Modifications to the Repository for XML streams
	3 UNIFACE support for XML and DTD syntax
	3.1 Attribute declarations
	3.2 Element declarations
	3.2.1 Root element declarations
	3.2.2 Element declarations for UNIFACE entities
	3.2.3 Element declarations for UNIFACE fields
	3.2.4 XML standard syntax (expressed in UNIFACE conventions)

	3.3 Miscellaneous DTD and XML syntax support
	3.3.1 Comments
	3.3.2 White space
	3.3.3 Processing Instructions
	3.3.4 Unique element names
	3.3.5 XML entities
	3.3.6 Document subdeclarations

	3.4 Sample DTDs and XML streams
	3.4.1 A basic DTD and XML stream
	3.4.2 Sample DTD and XML stream
	3.4.3 Element declarations for entities
	3.4.4 Unique element names and namespaces
	3.4.5 DTDs and mapping

	4 XML transformations
	4.1 XSLT (XSL Transformations)
	4.2 UNIFACE XSLT tools and components
	4.3 How XSLT works
	4.3.1 Learning more about XSLT

	4.4 XSLT Workbench
	4.5 USYSXSLT
	4.6 Basic XSLT techniques—examples
	4.6.1 XSLT—rename elements and attributes
	4.6.2 XSLT—change attributes to elements
	4.6.3 XSLT—reorder elements
	4.6.4 XSLT—suppress empty elements or attribute
	4.6.5 XSLT—implement exclusive OR relationship

	4.7 XSLT applied to UNIFACE—examples
	4.7.1 B2B XSLT stylesheets
	4.7.2 Transform an XML stream
	4.7.3 Get values from an XML stream using XSLT
	4.7.4 Operation GETXMLITEM

	4.8 Validation—examples
	4.8.1 Validate an XML stream

	5 Handling communication between components
	5.1 Using the DTD Editor
	5.1.1 Start the DTD Editor
	5.1.2 Generate a DTD from a component's structure
	5.1.3 Generate DTDs from entities
	5.1.4 Load a DTD from a file
	5.1.5 Define relationships in XML streams
	5.1.6 Select attributes for elements
	5.1.7 Define a default mapping for a DTD
	5.1.8 Define a DTD manually
	5.1.9 Define additional DTD properties
	5.1.10 Compile a DTD

	5.2 Handling XML streams
	5.2.1 Load a DTD from a file
	5.2.2 Select attributes for elements
	5.2.3 Define a local mapping for a DTD
	5.2.4 Create and send an XML stream
	5.2.5 Receive an XML stream
	5.2.6 Reconnect data from an XML stream
	5.2.7 Do remote validation
	5.2.8 Make DTDs available to non-UNIFACE components

	5.3 Develop and test XSLT stylesheets

	6 Proc statements and functions
	Name $occcrc
	Name $occproperties
	Name $occstatus
	Name retrieve/reconnect
	Name xmlload
	Name xmlsave
	Name xmlvalidate

